November 16-17 2020

THE INTERNATIONAL
CONFERENCE OF EXPERTS
FROM RUSSIA AND
ASEAN MEMBER STATES

Improving the system interaction and exchange of experience in diagnosis, treatment and prevention of tuberculosis (TB)

Presentations

Proceedings of the International Conference of experts from Russia and ASEAN member states "Improving the system interaction and exchange of experience in diagnosis, treatment and prevention of tuberculosis (TB)"

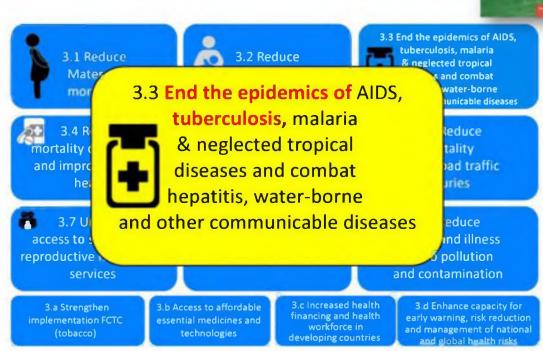
Presentations

Russia: M.D, PhD, Prof. Irina Vasilyeva "Progress in implementation of the END TB strategy"
Indonesia: Dr. Imran Pambudi "Multisectoral approach and high level commitment to end TB in
Indonesia"
Cambodia: Dr. Huot Chan Yuda "Progress Update on TB Control"
Brunei Darussalam: Dr. Mohammad Fathi Alikhan "Development of a digital surveillance model for
TB Control in Brunei Darussalam"
Myanmar: Nang Saung Kham "National response to TB, TB-HIV & MDR TB in Myanmar"
Russia: M.D, PhD, Prof. Valentina Aksenova "Management of latent TB infection in children in
Russia"
Russia: M.D, PhD, Anastasia Samoylova "Russian experience TB treatment: multisectoral
approaches"
WHO: Dr. Avinash Kanchar "TB prevention"
Russia: M.D, PhD, Oksana Komissarova "Central Tuberculosis Research Institute Peculiarities of
Approaches to Complex Treatment of Patients with Pulmonary Tuberculosis with Co-existing
Diabetes"
Singapore: Deborah Ng Hee Ling, Jeffery Cutter "Diagnosis, treatment and prevention of TB in
Singapore"
Russia: M.D. Anna Panova "TB Detection and Diagnosis – Russian Approaches"
Russia: M.D, PhD, Prof. Vladimir Romanov "Diagnostics of Tuberculosis and Nonspecific
Pulmonary Diseases"
Malaysia: Roddy Teo "Mobile Xray services: Bringing Universal Access to the Community"
Russia: M.D, PhD. Prof Vadim Testov "Monitoring and surveillance of MDR-XDR TB in the
Russian Federation"
Russia: M.D. Evgeny Belilovskiy "Study on the Spread of Tuberculosis with Drug Resistance of the
Pathogen to Various Anti-Tuberculosis Drugs using Molecular Genetic Methods among the
Permanent and Migratory Population of Moscow"
Myanmar: Nang Saung Kham "National response to TB, TB-HIV & MDR TB in Myanmar"
Russia: M.D, PhD, Prof. Dmitrii Giller and M.D, PhD. Inga Enilenis "Possibilities of Surgical
Treatment of MDR/XDR Pulmonary Tuberculosis
Laos: Dr Sakhone Suthermany "TB/HIV collaborative activities in LAO PDR"
Russia: M.D, PhD, Nadezhda Klevno "Tuberculosis and HIV infection in children: features of
diagnosis, treatment, prevention"
WHO: Dennis Falzon "TB/COVID-19 co-infection"
Malaysia: Mohd Ihsani Mahmood "Impact of Tuberculosis Control Program during Pandemic
COVID-19"
Myanmar: Aye Nyein Phyu "The Best Practices in TB control in Myanmar as a base for further
Collaboration for End TB"

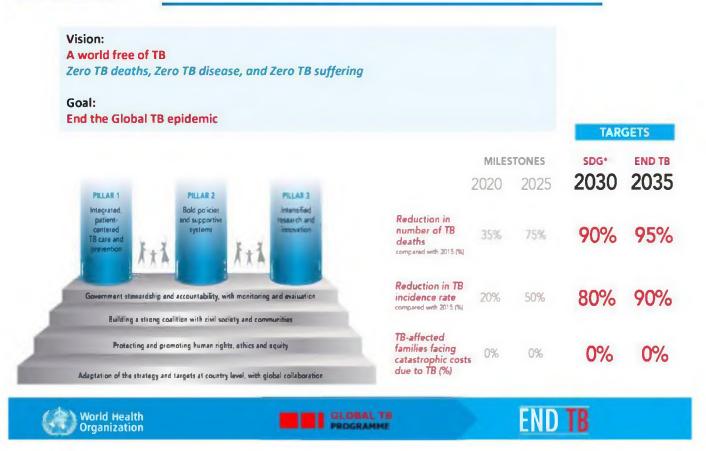
International Conference of Experts from Russia and ASEAN Member States
Improving the System Interaction and Exchange of Experience in Diagnosis,
Treatment and Prevention of Tuberculosis (TB)

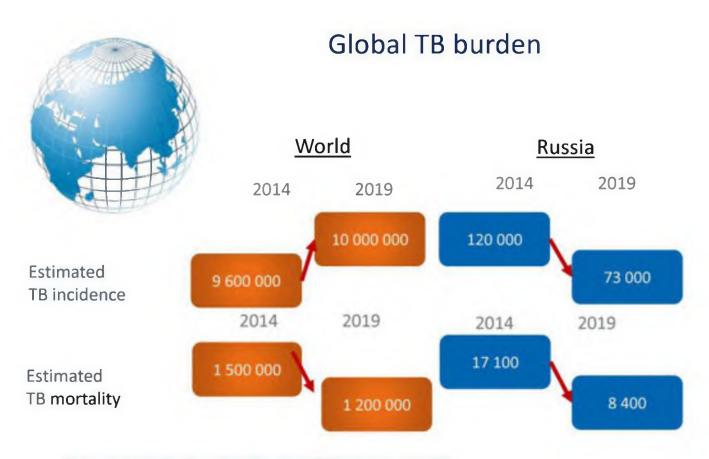
Progress in implementation of the END TB strategy

Prof. IRINA VASILYEVA
Chief TB expert of the MoH

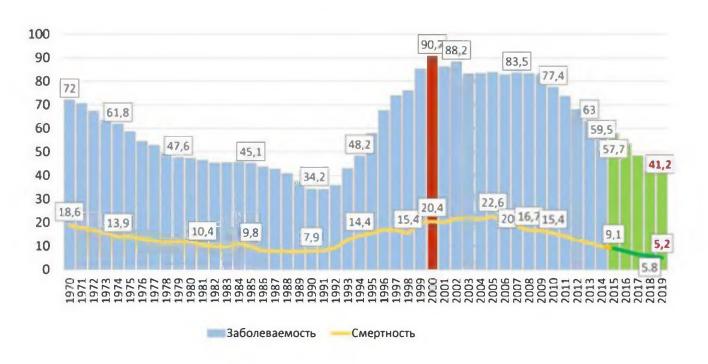

National Medical Research Center of Phthisiopulmonology and Infectious Diseases Moscow, Russian Federation

November 16-17, 2020

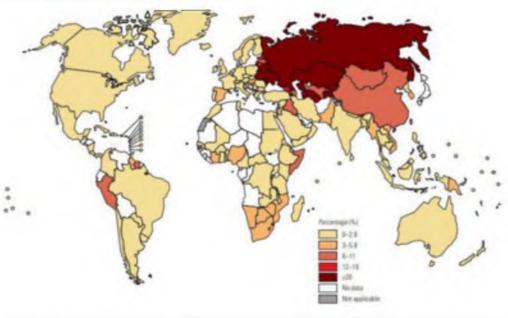




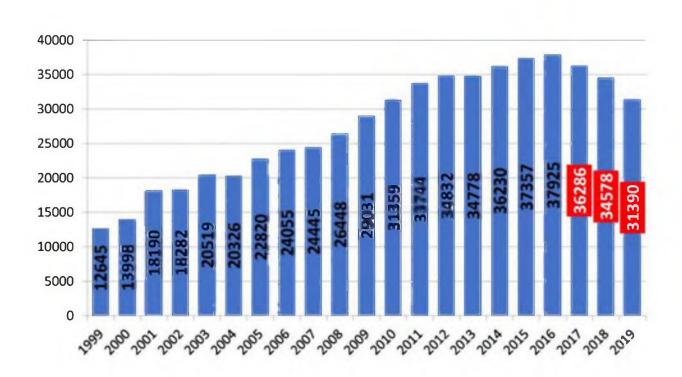
The End TB Strategy: Vision, Targets and Pillars

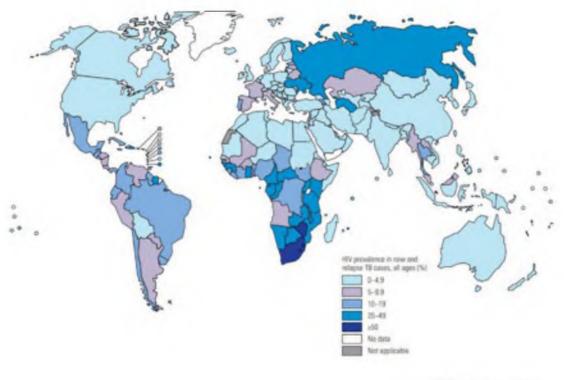

Total population in **2020** – 146,78 millions people

Tuberculosis is the top infectious killer in the world


Global TB Report 2015, 2020

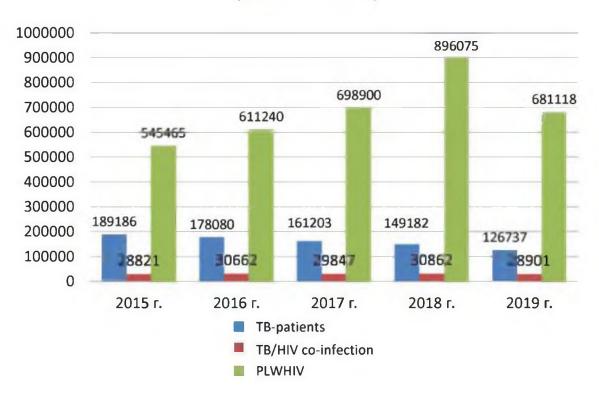
TB incidence and mortality rate in the Russian Federation, 1970 – 2019


Percentage of New TB cases with MDR/RR-TB



Percentages are based on the most recent data good for countries with representative data from 2005 to 2020. Model has ad estimates for countries without data are not representative data from 2005 to 2020. Model has ad estimates for countries without data are not

Absolute number of MDR-TB patients in Russia



Estimated HIV prevalence in new and relapse TB cases, 2019

Global TB Report 2020

Absolute number of PLWHIV, TB and TB/HIV patients (2015 – 2019)

Current challenges & urgent actions needed to achieve high-level end-of-TB commitments and targets

Challenges:

- High levels of MDR-TB (32% of MDR-TB cases among new cases)
- Spreading HIV and increasing risks of TB/HIV co-infection (19% of TB/HIV among new TB cases and relapses)

Urgent actions:

Political support

tuberculosis

- MDR-TB prevention, detection and treatment
- Prevention of TB/HIV co-infections

National TB Strategy in the Russian Federation

Patient-centered detection, prevention and treatment of

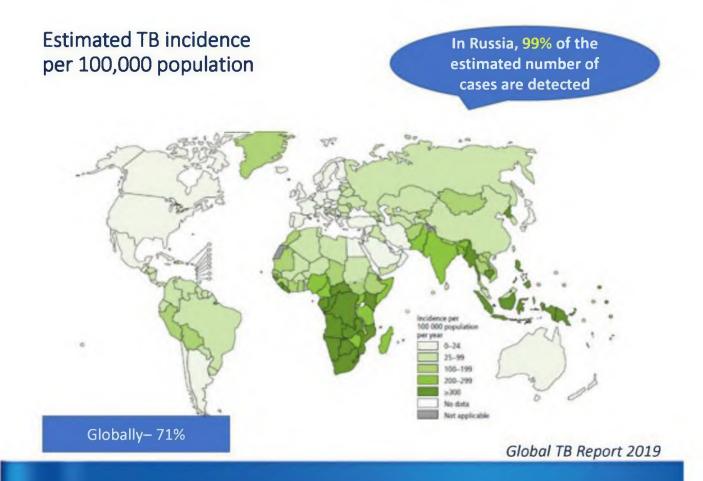
Intensified priority research in phthisiology

Political support

- TB Control is included in Federal Programme of Russian Federation "Development of Health Care"
- Implementation of regional action plans on decreasing of TB deaths
- Medical care is free of charge
- Availability of all range of medical service to the Russian citizens
- TB diagnostic on modern principles
- Proper drug management
- Social support and protection

Patient-centered detection, prevention and treatment of tuberculosis

Prevention of TB in risk groups


Early detection of tuberculosis

Early diagnostics of MDR TB

Effective treatment

Enhancement of treatment adherence

Collaborative programs on TB/HIV co-infection

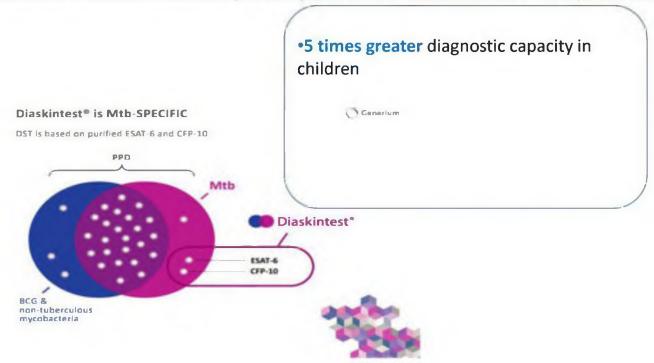
Early TB detection in risk groups

for TB in 2019:
72.3% of all population,
85.0% of children in the
age from 0 to 14 years old
is covered with immune
tests

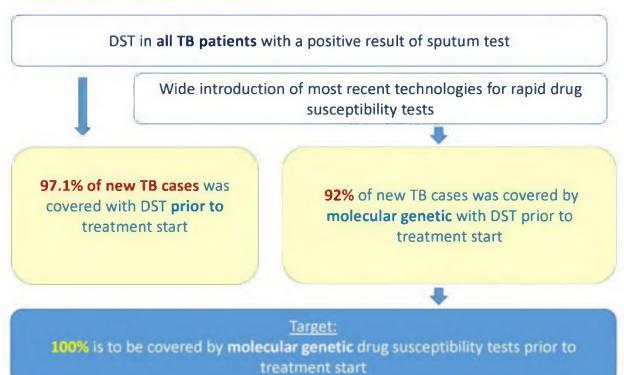
Revision of the regulatory framework:

- -on management of active TB detection
- on management of diagnostics in healthcare facilities

Inter-agency programs on mass screening for TB in risk groups


Target:

Coverage with screening for TB of at least 90% of those from risk groups


Recombinant tuberculin

Diaskintest® - the new generation of TB skin tests

Positive outcomes of incorporating the test in public health care practice:

Early diagnostics of MDR TB

Russian molecular genetic technologies for TB diagnosis and DST

Biochip Hydrogel

Multicomponent allele-specific PCR
Real-time PCR technology

National Medical Research
Center
Phthisiopulmonology and
Infectious Diseases

Issues requiring research

Prevention

- · Primary prevention
- · Diagnostics and treatment of latent tuberculous infection

Diagnostics

- Pulmonary tuberculosis with the lack of sputum and markers of M. tuberculosis in the specimens
- Extrapulmonary tuberculosis
- · Tuberculosis in the HIV infected

Short-course effective treatment

- MDR/XDR TB
- TB/HIV co-infection
- · MDR/XDR TB in children

Areas of intensified research

Fundamental research Translationa studies Preclinical/Clinical studies

Operational research

Tangibly intensified effort is needed *along the full spectrum of research*:

- Basic science (immunology, pathogenesis) to prompt discovery of new tools
- > R&D pipeline for testing and validating new tools
- > Innovative strategic approaches adapted to specific country needs
- > Factors influencing health-related practices of patients and health care workers
- > Social determinants of health and financial protection

GamTBvac: a novel recombinant subunit tuberculosis vaccine, Russian Federation

Product:

GamTBvac, recombinant subunit vaccine against tuberculosis, 12.5 mg/dose

Stage of development: Clinical trials phase II

Developer and manufacturer: Gamaleya State Research Center for Epidemiology and Microbiology

National Medical Research Centre of Phthisiopulmonology and Infectious diseases

Focused areas of research

- Study of TB immunopathogenesis, dormancy, search of biomarkers of TB activity
- **Sequencing** (NGS), search for new determinants for DR, molecular epidemiology
- Search new targets of regulation and testing of candidate molecules for new TB drugs
- Development of the alternative methods of TB treatment with the use of mycobacteriophages
- Development of prevention, diagnostics, treatment strategies
- Evidence based methods of TB care management

FIRST WHO GLOBAL MINISTERIAL CONFERENCE
ENDING TB IN THE SUSTAINABLE DEVELOPMENT ERA: A MULTISECTORAL
RESPONSE

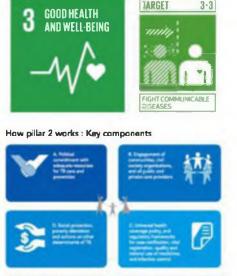
« ... Only together, uniting efforts, we will be able to counter the threat, which is, ot course, global in nature.»

«... an important factor of success is the intensification of scientific research in the field of tuberculosis, the development of effective diagnostic tools, vaccines, drugs, including those aimed at treating resistant to existing drugs forms of tuberculosis...»

President of the Russian Federation V.Putin

The Conference was attended by over 1000 participants from 120 Member States

• Indonesia: Dr. Imran Pambudi "Multisectoral approach and high level commitment to end TB in Indonesia"



ACCOUNTABILITY FOR WHAT?

- Political → Highest political visibility
- Financial → Sustainable adequate resources
- Performance → Multi-sectoral actions

nd Pillar of END TB STRATEGY

POLICIES & LEGISLATIONS

& REPORTING

- Draft of the Presidential Decree on Tuberculosis (End of 2020)
- TB Prioritization regulations in other ministries
- Presidential High Level Meeting on TB Acceleration (July 2020)
 Ministry of Finance, Coordinating Ministry of Human Development and Cultural Affairs, Ministry of Social Affairs, Ministry of Health, Ministry of Public Works and Housing
- Partnered with TB CSOs and affected communities to review the implementation of TB
- Patient-centered approach

> 2X INCREASE IN TB BUDGET FOR 2021

Progress Update on TB Control

International Online Conference of Experts
from Russia and ASEAN Member States
"Improving the system of interaction and sharing experience in diagnostics,
treatment and prevention of tuberculosis",
16-17 November 2020

Dr. Huot Chan Yuda

Director

National Center for TB and Leprosy Control, MoH, Cambodia

VCAM-NTP

Outlines of Presentation

- 1. Burden of Tuberculosis in Cambodia
- 2. Achievements
- 3. Challenges
- 4. Impact of COVID-19 on TB
- 5. NTP Future Direction
- 6. Major Funding Sources
- 7. Summary

VCAM-NTP

1. Burden of TB in Cambodia

- Cambodia is one of the 22 HBC with TB in the world till 2015. From 2016, Cambodia remains one of the 30 HBC with TB in the world.
- Incidence Rate* of all forms of TB in 2019: 287/ 100,000 pop.

*WHO Global TB Report 2020

Death rate*: 17/100,000 pop. in 2019 * WHO Global TB Report 2020
NTP has alos achieved the MDG target for this indicator (4 years before schedule)

VCAM-NTP

3

1. Burden of TB in Cambodia (Cont')

Prevalence Rate of all forms* of TB in 2014: 668 / 100,000 pop. *WHO Global TB Report 2015.

TB Prevalence declined from 1670 in 1990 to 817 in 2011 (51% reduction);

NTP has achieved the MDG target for this indicator (4 years before schedule)

- Results of national prevalence surveys
 - Prevalence Rate of Sm+* for > 15 y
 - in 2011: 271/ 100,000 pop.
 - in 2002: 437/ 100,000 pop.

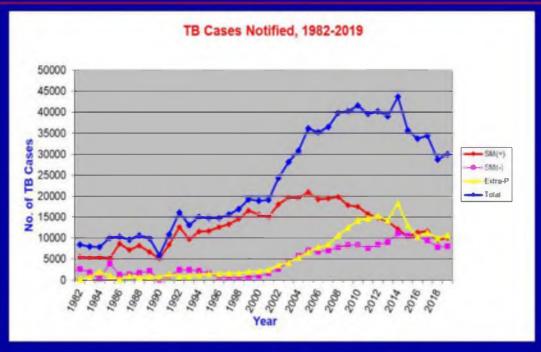
Reduction of 38% in 9 years (2002-2011)---an average of 4.2 % per year.

VCAM-NTP

1. Burden of TB in Cambodia (cont')

- HIV Sero-prevalence among TB Patients: 2.5% in 1995,
 - **12%** in 2003, **10%** in 2005, **7.8%** in 2007 and **6.3**% in 2009, and **2 2.5** % in **2019** (rough estimate)
- MDR-TB burden in 2019, Cambodia (WHO Global TB Report 2020)
 - Percentage of TB cases with MDR/RR-TB among new smear positive= 1.8%
 - Percentage of TB cases with MDR/RR-TB among retreatment cases= 8.2%

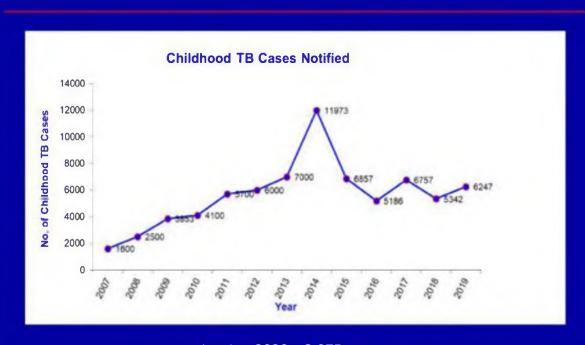
VCAM-NTP


5

2. Main Achievements

VCAM-NTP

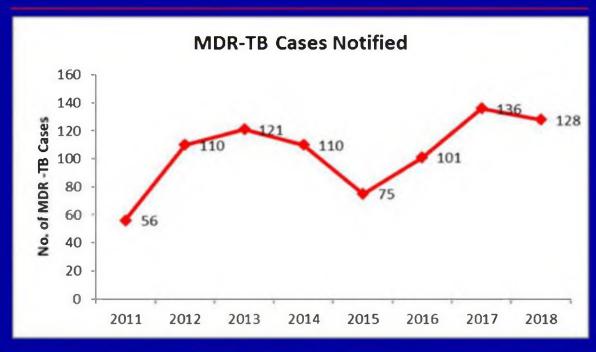
2.1 TB Case Notification Nationwide 1982-2019



Total cases: 21,732 (Jan-Sep 2020)

VCAM-NTP

7


2.2 Childhood TB cases notified

Jan-Jun 2020 = 3,075 cases

VCAM-NTP

2.3 MDR/RR-TB enrolled on Treatment

MDR-TB cases notified in 2019 = 135 and 2020 (Jan-Jun) = 63

VCAM-NTP

9

2.4 Treatment Outcomes

- Treatment Success rate of DS-TB: 94 % last year,
- MDR-TB treatment success rate in 2017 cohort: 72%

VCAM-NTP

2.5 Other Achievements

- TB/HIV Activities (since 2003): by the end of 2008- 74 ODs, and by the end of 2011- all ODs. Now, all ODs (103 ODs).
 - HIV testing among TB patients: **94%** (2019), 91% (Jan-Jun 2020).
 - HIV(+) TB patients received ART: 98% (2019), 85% (Jan-Jun 2020).
 - IPT among PLHIV has increased from 2,954 in 2018 to 8,381 in 2019.
- IPT among Children < 5 Yrs: 3,030 in 2019, and 1,981 (Jan-Jun 2020)</p>
- C-DOTS/Community TB screening covered 644 HCs in 46 Ods by 2019. In 2020, 76 Ods (GF) & 10 Ods (USAID/COMMIT projet)
- PPM-DOTS (since 2005): in 8 provinces and 270Ds by 2014. No more this activity since 2015.

VCAM-NTP

11

2.6 Other Achievements (cont')

- TB in prison (since 2005): 26 prisons in 2015 and 17 prisons in 2016 & 2017.
 - 2019: 19 prisons (107 TB cases notified)
 - 2020 (Jan-Jun): 48 cases notified (16 prisons)

VCAM-NTP

2.7 Community DOTS/Community TB care

- 46 Operational Health Districts, 664 HCs by 2019 and 76 Ods in 2020 supported by GF
 - TB cases notified by Community DOTS in 2019: 9,665 (% contribution by C-DOTS: 32% (9,665/30,017)
 - Jan-Jun 2020: 5,842 cases

VCAM-NTP

13

2.8 Active Case Finding

- Active Case Finding by NTP/CENAT (2019)
 - 7 operational districts
 X-ray taken: 8,589, Xpert testing: 923.
 Total 283 TB cases were detected including 136 bac (+)
 TB cases.
 - 3 prisons, X-ray taken: 5,264, Xpert testing: 293.
 Total 57 TB cases were detected including 17 bac (+) TB cases and 2 drug-resistant TB case.

VCAM-NTP

2.9 Active Case Finding (cont')

Active Case Finding by CATA (2020)

2 12 operational districts (OD) Screen 49,123 elderly people by symptom & CXR) X-per testing 6,305, total number of TB cases 1,224 detected 2,197 including 641 Xpert positive.

VCAM-NTP

15

2.10 Research

- Third national drug resistance survey just completed (preliminary results RR/MDR: around 1% in new cases, and around 10% among retreatment cases).
- NTP and Institute Pasteur of Cambodia under TB-Speed project had started a research project to strengthen pediatric tuberculosis services for enhanced early case detection, which was supported by the UNITAID and INITIATIVE 5%. This research will be finished in 2021
- Study on TB preventive therapy using 3HP involving multicountries project in collaboration with partner (CHAI).
- NTP is discussing with WHO, National University of Singapore and other partners to explore/select the study topics for the period 2021-2023.

VCAM-NTP

3. Challenges

- Programmatic:
 - high incidence, 1/3 of cases is still missing,
 - MDR, Childhood TB, High risk group (coverage, diagnostic tools,..)
- Resources: Big financial gap

VCAM-NTP

17

3. Challenges (cont')

- Resources to maintain momentum activities and expanding services (routine TB services, C-DOTS, TB-HIV,MDR-TB, Childhood TB, Xpert MTB/RIF, Laboratory capacity, TB in Prisons, etc)
- Anti-TB drugs and Diagnostic supplies
- Annual budget needed 30-35 Million/year (2021-2030)
- Currently ,only 2 major donors: GFATM and USAID,
- Budget allocation from GF for 2015-2017: 15.66 Million (around 5.20 million per year)
- Budget allocation from GF for 2018-2020: 13.7Million

(around 4.6 million per year); and additionally plus 2.7 Million from Fund Portfolio Optimization for late 2019 and full 2020.

Budget allocation from GF for 2021-2023:

-Allocation: USD 13.9 Million
-Matching Fund: USD 6 Million

-PAAR: USD 7 Million

Financial gap still remain: may be bigger than 40%?

VCAM-NTP

4. Impact of COVID-19 on TB

	2019 Jan June:	2020 Jan June	% Difference
DS-TB	15,043	14,035	7.2
DR-TB	68	63	7.4

COVID impact on 2020 TB case finding diagnosis:

• Most of activities (ACF, community TB screening,) have been postpone/cancelled due to restriction: overall 6 months period dropped 7.2%-7.4% comparing the same period in pre-Covid-19.

Delivery of medicines treatment:

- Health Facilities provide longer period of medicines (2-3 months) to patients
- However, no TB drug interruption at the central and sites

VCAM-NTP

5. NTP Future Directions

Long terms goals: 2016-2030

- Toward contributing to reaching SDG and End TB-Strategy
- Reduce TB incidence 80% by 2030
- Reduce TB mortality 90 % by 2030
- Resource mobilization

VCAM-NTP

6. Major Funding Sources for NTP

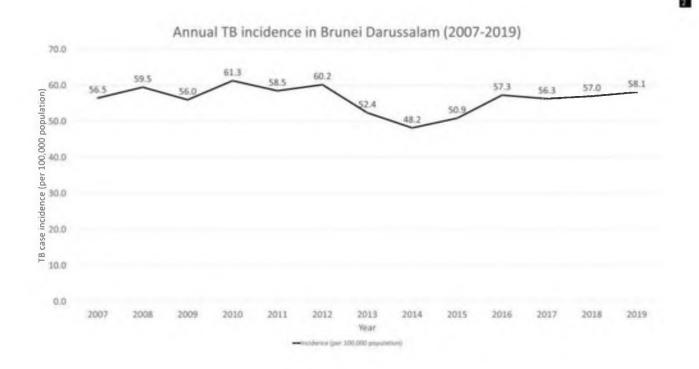
- Government
- GF
- USAID (including Challenge TB)
- US-CDC
- ADB
- WHO, Stop TB Partnership(GDF,TBREACH)
- JICA/JATA
- Others (NGOs...)

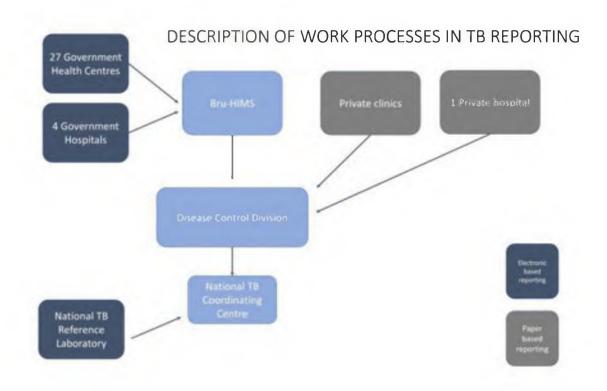
VCAM-NTP

21

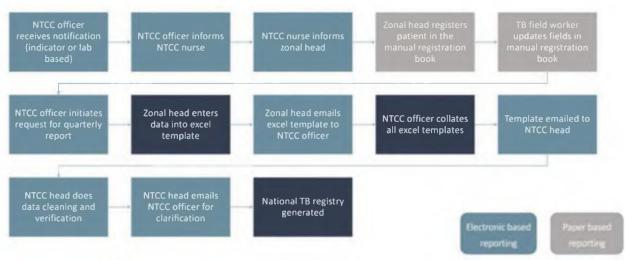
7. Summary

- Strong political commitment & leadership
- Clear policies, strategies, guidelines, SOPs and plans
- Strong infrastructure
- Good performance
- Big financial gap in the next 6 years
- Urgent need for more resource mobilization.


VCAM-NTP

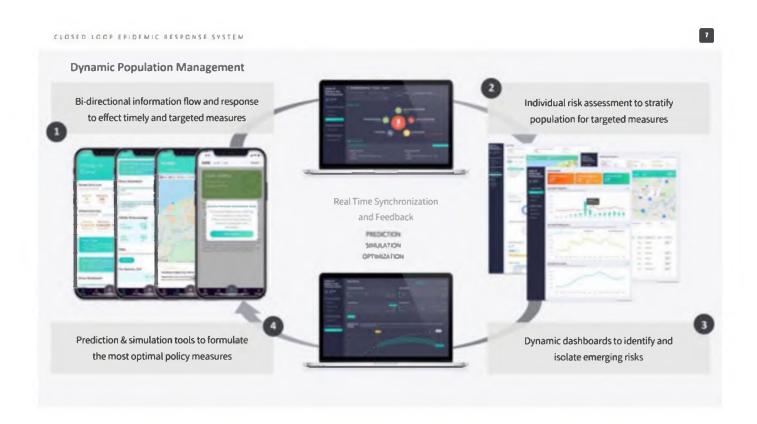


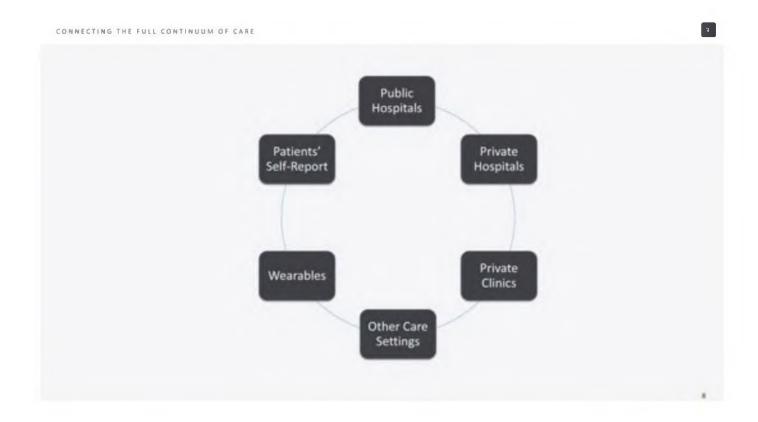
VCAM-NTP


• Brunei Darussalam: Dr. Mohammad Fathi Alikhan "Development of a digital surveillance model for TB Control in Brunei Darussalam"

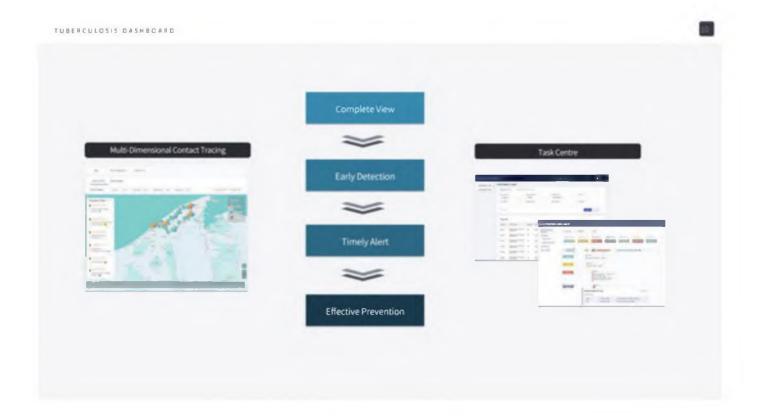
Description of work processes in generating the national TB registry in Brunei Darussalam

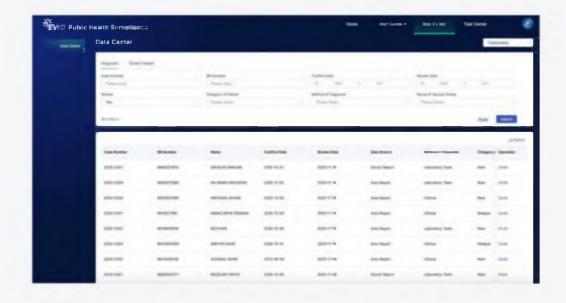


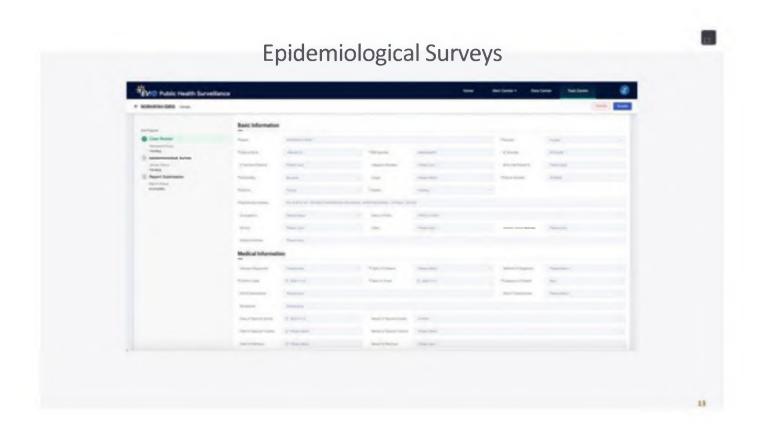

Source: The Evaluation of the Tuberculosis Indicator Based Surveillance System in Brunei Darussalam 2018

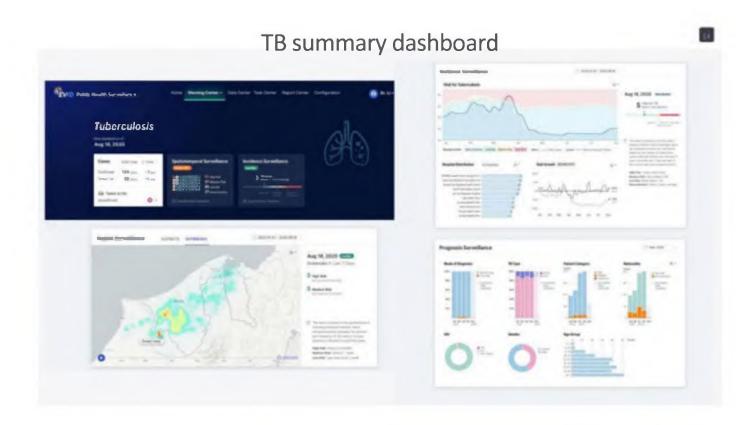

5

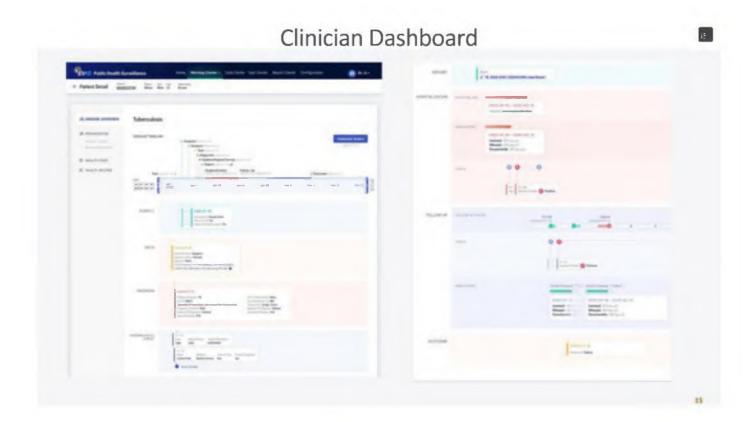
Recommendations from TB surveillance system evaluation

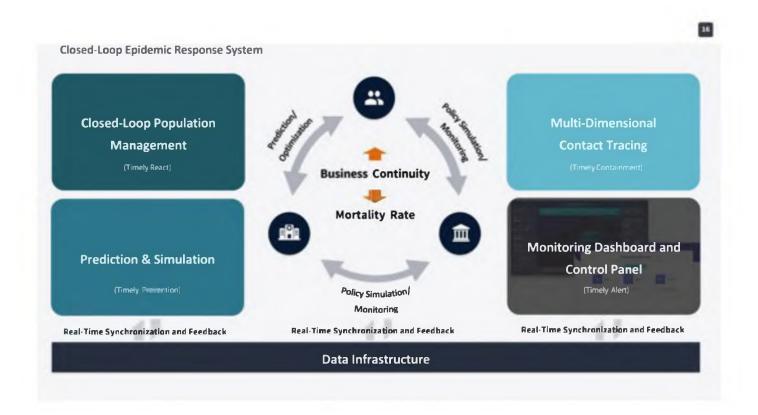

- Encouraging accuracy of ICD-10 coding by physicians
- Increased awareness about reporting to the TB indicator-based surveillance system
- A purpose-built integrated TB surveillance system should be explored, to increase validity of data.
- Surveillance and reporting standards for TB should be introduced.

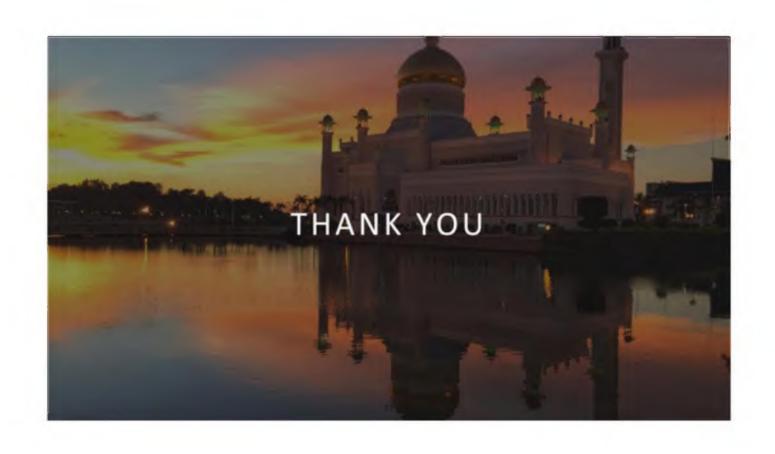



Tuberculosis Data Centre



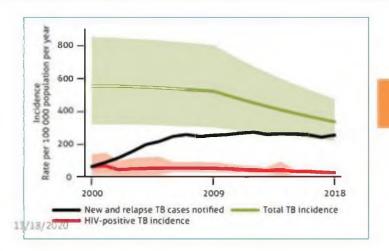

Activity tracing




34 / 245

International Conference of Experts from the Russia Federation and the ASEAN member states

National response to TB management & control in Myanmar


Dr. Nang Saung Kham Assistant Director (TB/Leprosy) Eastern Shan State, MOHS, Myanmar 16th-17th .11.2020

TB Burden and Trend – in Myanmar (2018)

Source: Global TB Report 2019

2018	Number (K)	Rate (/100K)	Ranking among WHO SEARO countries
TB Incidence	181 (119-256)	338 (222-477)	3rd
TB/ HIV + Incidence	15 (10-22)	29 (19-41)	1st
MDR (RR) TB incidence	11 (7.4-16)	21 (14-30)	1st
HIV (-) Mortality	21 (12-31)	39 (23-58)	3rd
HIV (+) Mortality	3.7 (2.5-5.2)	6.9 (4.6-9.7)	

Annual Decline of Incidence: 4.9%
Case Notification Gap: 24%

Vision, Goal and Objectives on Ending TB in Myanmar

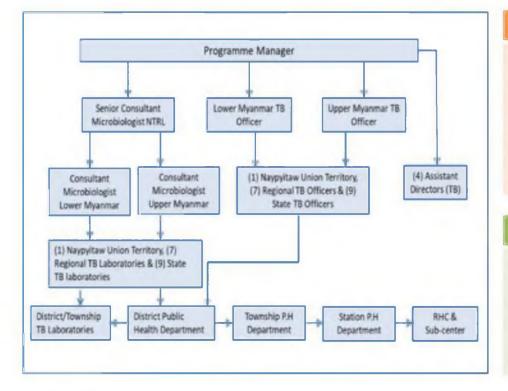
Vision: Myanmar free of TB

Zero deaths, disease and suffering due to TB by 2050

Goal: End TB epidemic in Myanmar Fewer than 10 cases per 100,000 population by 2035

Objective 1: accelerate the decline in the prevalence of drug-sensitive and

drug-resistant TB


ne
Objective 2: fully
integrate TB prevention
and care in Universal
Health Coverage

Objective 3: enhance the prevention of TB, particularly for highrisk populations

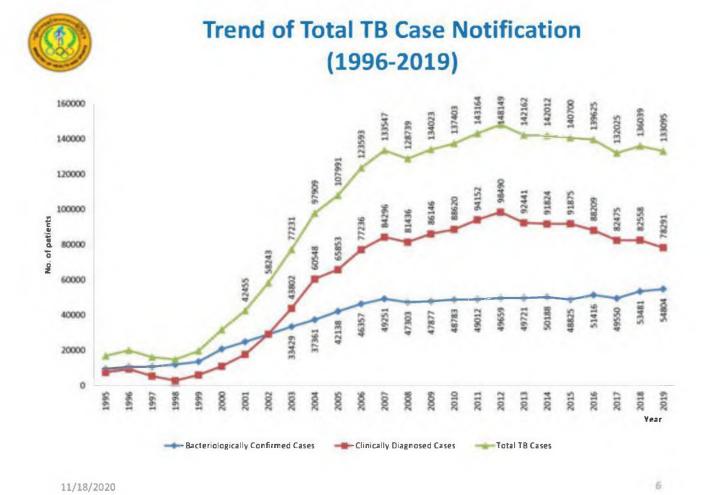
11/18/2020

National TB Programme structure and staffing

Strength

- · Well structured
- Supported by seconded staffs
- Committed staffs at all levels
- New PHS II appointments

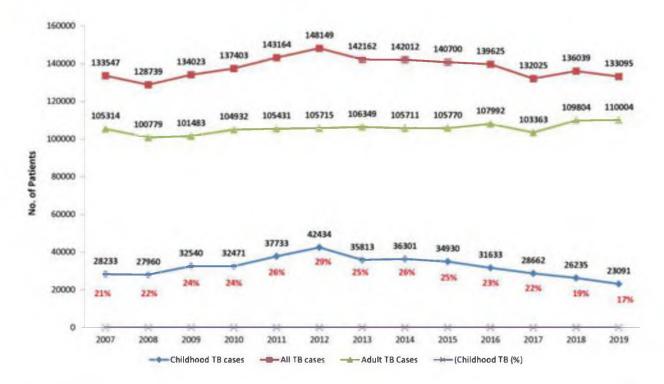
Challenges


- HR limitation (Only 30% of posts are filled)
- Depend on seconded staffs in some areas
- High staff turnover

Multisectoral Accountability


- TB is a **priority disease** of the country
- Government funding contribution increased for TB care & control
- Policy statement on Mandatory TB Case Notification by MoHS (24th Sep 18)
- Consultation workshop on Multi-Sectorial Action to End TB was conducted with related Ministries, Donors, UN, WHO, EHO & Implementing Partners
- Better engagement & collaboration with civil society for TB case finding, case holding
 & health education
- Engagement with MMA & Myanmar Private Hospitals Associations for mandatory TB case notification

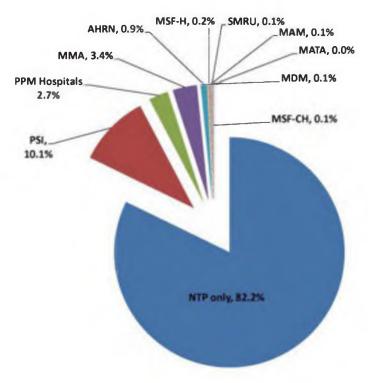
11/18/2020


Case Notification Rate(CNR) (all forms) according to States/Regions, 2019

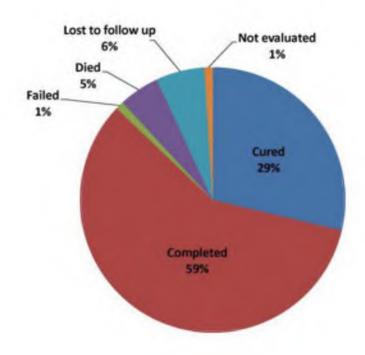
11/18/2020



Trend of Childhood TB cases (2007-2019)

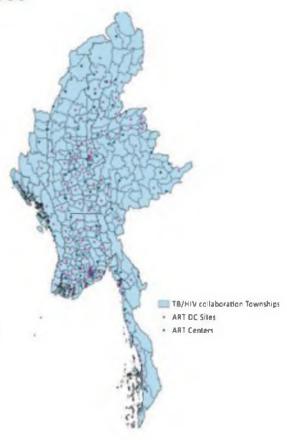

Proportion of Childhood TB cases, 2019

11/18/2020



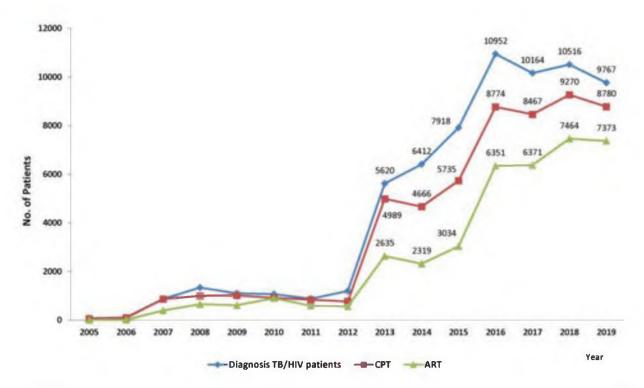
Proportion of Total TB cases contributed by NTP & Other Partner units in 2019 (n=133095)

Treatment Success Rate(TSR) (all forms), 2018 Cohort (88%)

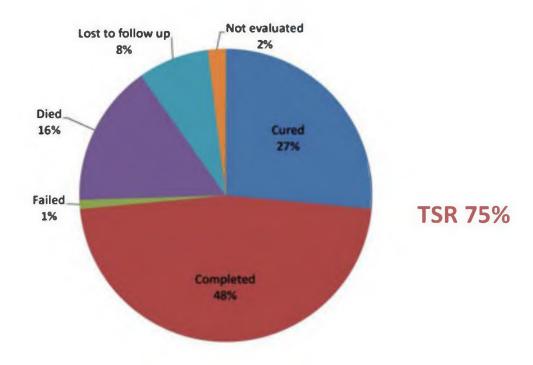


11/18/2020 11

TB/HIV collaborative townships and ART centers/ DC sites


- Initiated in 7 townships since 2005
- Gradually expanded to 28 townships by 2013
- Scaled up to 108 townships in 2014;
 covering a total of 136 townships in 2014
- Scaled up to 100 townships in 2015; covering a total of 236 townships
- Scaled up to 94 townships in 2016; covering all 330 townships in 2016.

11/18/2020


Trend of TB/HIV Collaborative Activities

11/18/2020 13

Treatment outcomes of TB/HIV cases registered in 2018 cohort

Coverage of TB Diagnostic Services in Healthcare Facilities

- Microscopy and X-ray: all townships & some stations levels
- Microscopy, X-ray & GeneXpert: all States/Regions, District levels and some high burden townships
- 526 sputum smear microscopy centers (with 158 iLED Fluorescent MS) under EQA system
- 108 machines with GeneXpert MTB/RIF upto now
- 3 Culture/DST Centers (Yangon, Mandalay & Taunggyi)
- 2 Reference Laboratories for 2nd line LPA (Yangon & Mandalay)

15

11/18/2020

Programmatic Management of Drug-resistant TB (PMDT)

Status of uptake of 2019 WHO consolidated guidelines on DR-TB treatment

- Bedaquiline registration is under process with FDA
- Ordered treatment courses: 358 for IFFO; 359 for pre-XDR & XDR; 12 for pediatric; 561 to replace Am intolerance; 107 for patients requiring treatment extension beyond 6 months
- Transition plan to new treatment regimen is under process
- Some Operational Research on shorter treatment regimen is still in process

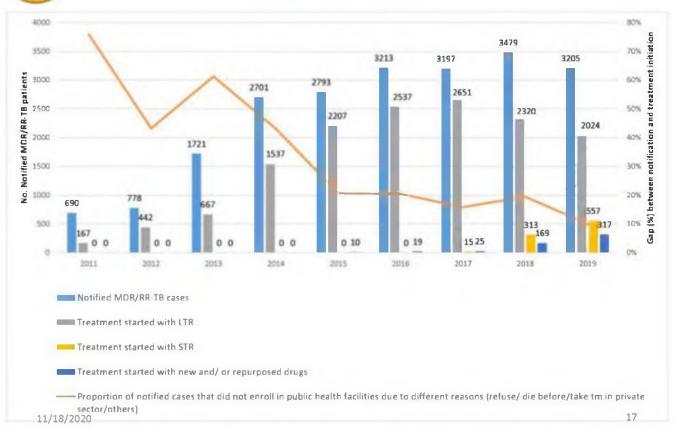
Best practices

Follow updated WHO's guidelines & recommendations according to local context under National Expert DR-TB committee's Guidance

Challenges in PMDT

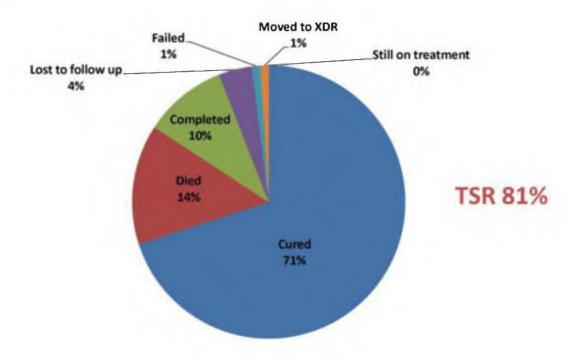
HR limitation

Gap between notified & enrolled MDR-TB pts


Lab capacity & extra infrastructure/maintenance

11/18/2020 16

45 / 245



Comparison of Notified MDR/RR-TB cases and Treatment initiation 2011 - 2019

Treatment outcomes 2017 PMDT cohort n=2621, TSR=81%

TB Preventive Treatment (TPT)

Target populations

- PLHIV & child contacts of TB patients (< 5 years)
- All childhood & household contacts (<35 years)
 considered to be expanded in next NSP

TPT Regimen

- 6H is currently in use
- Plan to do operational research on 3HP and 3RH (scale up of these shorter regimens depending on pilot results)
- Plan to develop national guideline for LTBI

- Usage of CXR before TPT is under consideration
- Consultation meeting for LTBI with NAP,
 physicians & paediatricians (27th Sept 2019)
- Central level workshop for LTBI (18th Oct 2019)
- TPT among PLHIV: 17.5% (6531/37402) in 2017,
 15.5% (5776/37277) in 2018 & 23.6%
 (4209/17835) in 2019 up to June
- TPT among Under 5 years old: 337 in 2017, 534
 in 2018 and 1218 in 2019.

11/18/2020 19

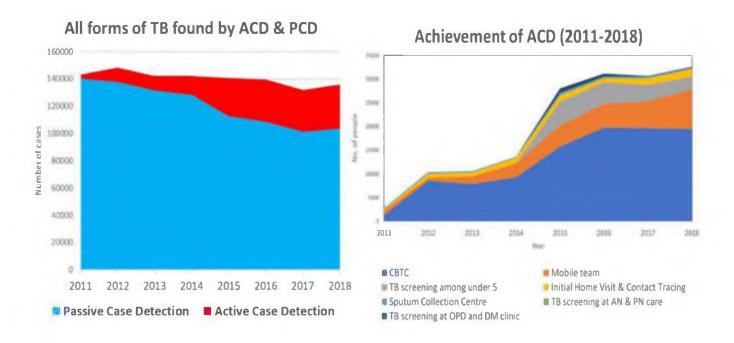
Intensified case-finding and systematic screening

Overall Strategy

 To strengthen missing TB cases especially in high-risk groups such as migrants, elderly, prisoners, patients with other co-morbidity, etc.

Key Interventions

- Community based TB care
 - General community, Volunteers from NGOs)
- Mobile Team activities
 - Hard to reach area, mobile teams from NTP & NGOs
 - Prison/worksites, mobile teams from NTP
 - Industrial areas and camps, mobile teams from NTP
- TB/HIV
 - NTP & NAP


11/18/2020

- TB/DM
 - NTP & clinic staffs
- TB screening among AN/PN mothers
 - MCH staffs
- TB screening among under 5
 - MCH staffs
- Mandatory notification of TB
 - Non PPM Partners

20

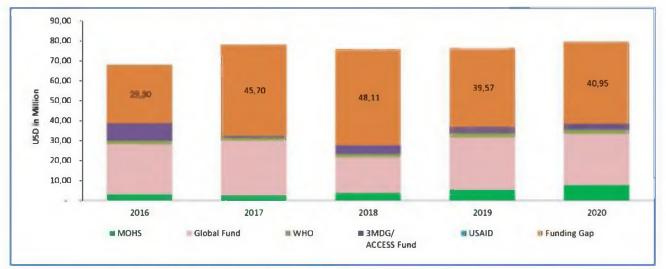
Key Achievements in finding the missing cases

11/18/2020 21

Community and civil society engagement

Community-based service delivery

- Among 330 townships, 245 are covered by Community Based TB Care
- Activities carried out by Community volunteers from 11 INGOs, 6 local NGOs and 3 EHOs.
- Malaria volunteers from some NGOs also perform Community Based Activities
- Main activities:
 - Health education & community mobilization
 - Symptoms screening & referral of presumptive TB cases
 - · Household contact tracing
 - · Treatment support & sputum transportation


Universal health coverage & social protection schemes

- For All Patients -
 - BGC vaccination
 - TB diagnosis
 - TB care & treatment (Free of charge)
- For DR-TB patients -
 - Monthly incentives,
 - Nutritional support &
 - TA

11/18/2020 23

TB Programme Financing

Opportunities

- · Government Funding increased
- New Global Fund concept note is in progress
- · Other funding sources

Challenges

- Funding sustainability beyond 2020
- Rely on international funding

National TB monitoring, evaluation & surveillance system

- Dissemination of Prevalence survey results in 2019
- Joint Monitoring Mission in 2019
- 4th National drug resistant survey in 2020
- Plan to conduct patient cost survey in next NSP period
- DS-TB Case-Based Recording & Reporting was piloted in Mon State in 2019
- Plan to expand DS-TB Case-Based Recording & Reporting to all townships in next NSP period

Challenges

- · Transition from paper based to electronic based reporting
- · Limited number & capacity of HR

11/18/2020 25

National strategy for TB research

- A National TB Research Strategy exists under Strategic Direction 3 of current NSP
- In 2017, National Operational/Implementation research agenda was developed with 8 thematic areas
- International support was the main funding source
- MoHS have started to finance for selected research
- NTP collaborate with Department of Medical Research, WHO & The Union (SORT-IT)
- Among 38 research topics, 22 have been completed

Strength

 Many NTP staffs have been trained under national & international researchers

Challenge

 Staffs are already overloaded with other activities & require additional time to conduct operational research

National Strategic Plan for TB (NSP) 2021-2025

Timeframe

- Draft NSP& Revision (Oct19)
- Stakeholder review of NSP draft (Nov19)
- Operational Plan (Nov19)
- M&E Plan (Nov19)
- Finalization & Costing workshop (Dec19)

Stakeholders

- Departments of MoHS
- Ministry of Home Affair (Prison Health)
- Social Security Board
- Defence Services Medical Academy
- UN & WHO
- · LNGOs, INGOs, CSO and CBO
- Donor agencies

Monitor NSP by annual targets according to M&E Plan

11/18/2020 2

Overview of progress, challenges & urgent actions needed to achieve high-level End TB commitments and targets

including 40 million people on treatment & 30 million people on preventive treatment by 2022

Strengths

- Government commitment: Increase funding support
- Mandatory Case Notification: Detect under reported cases
- Accelerated Case Finding Activities: Detect missing cases

Challenges

- Human Resource Limitation
- Universal DST (Sputum transportation)
- Funding sustainability beyond 2020

Key Actions for 2020

- Decentralization of diagnosis service to Station
 Hospitals
- Expand X-ray facilities in collaboration with
 Department of Medical Services
- Introduction of new diagnostic tools:
 GeneXpert Ultra, TB LAMP after pilot period
- High level advocacy meeting for TPT, New TPT regimen

• Russia: M.D, PhD, Prof. Valentina Aksenova "Management of latent TB infection in children in Russia"

Management of latent TB infection in children in Russia

V.A. Aksenova

Research Center of Phthisiopulmonology and Infectious Diseases, Russian MoH, Moscow, Russia

29.10. 2020 г.

Quick facts

- Globally, at least 1.12 million children (<15y) become ill with TB every year¹ (~581,000 boys and 538,000 girls in 2018), 47% under 5 years of age
- Children represent about 11% of all TB cases; higher (15%) in high burden countries.
- In 2018, 205,000 children died of TB (~560 children per day!) including 32,000 TB deaths (16%) among children who were living with HIV ¹
- 18% of children with TB died, compared to 15% overall number of people with TB who died in 2018
- Researchers estimate that 67 million children are infected with TB (7.5 million every year) and therefore at risk of developing disease in the future².
- Researchers estimate that 25,000 children develop multi-drug resistant TB every year².
- Data on TB among adolescents (10-19y) cannot be easily analysed as countries report by 0-4, 5-14 years (children) and 15-24

¹ Global Tuberculosis Report, World Health Organization 2019; ². Dodd P., et al, 2016

¹ Доклад о глобальной борьбе с ТБ, Всемирная организация здравоохранения 2019; ². Dodd P., et al, 2016

Case detection and prevention gaps 2018

The case detection gap

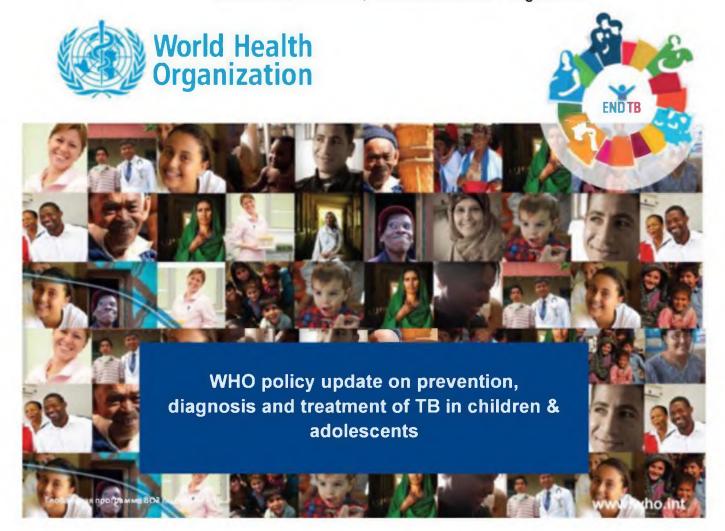
% of missing TB patients in different age groups

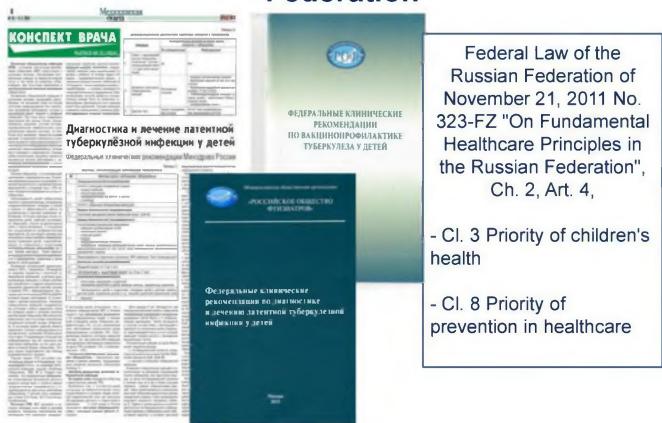
0-4 years 5-14 years All <15 All >15 years years

- Missing (under-diagnosis and underreporting)
- Reported

The prevention gap

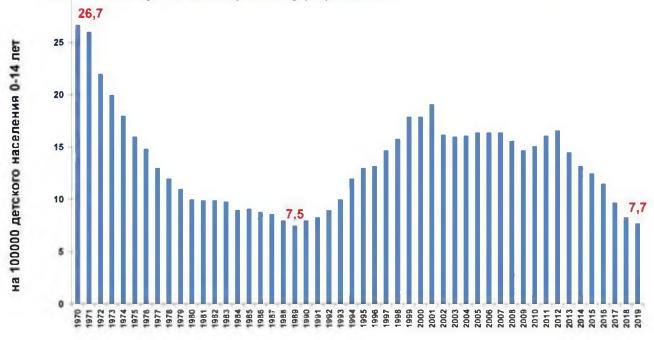
In 2018, **72.5%** of almost 1.3 million eligible contacts <5 years did NOT access TB preventive treatment (TPT)

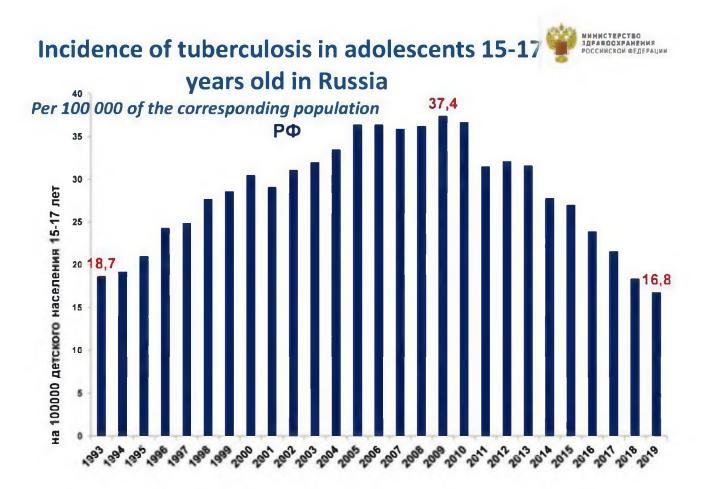




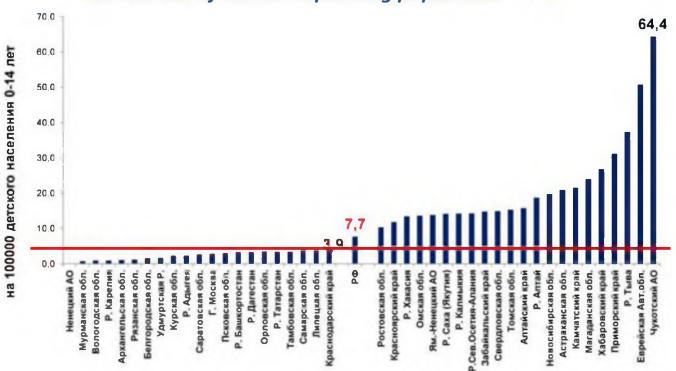
Annemieke Brands, WHO Global TB Programme

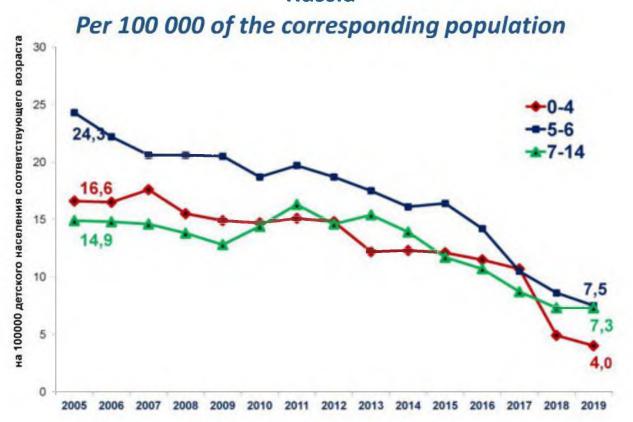
Priority of prevention in the Russian Federation




Morbidity rate in children and adolescents in the Russian Federation with regard to active tuberculosis show positive trends

Incidence of tuberculosis in children 0-14 years old in Russia


Per 100 000 of the corresponding population


Incidence of tuberculosis in children 0-14 years old in Russia

Per 100 000 of the corresponding population

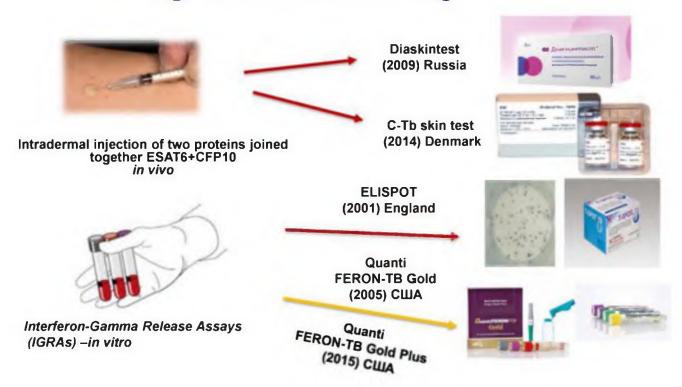
МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИИСКОЙ ФЕДЕРАЦИИ

Incidence of tuberculosis in children 0-14 years old in Russia

Non-respiratory tuberculosis incidence in children 0-14 years old CNS - Central nervous system involvement BS - Bone system involvement GU - Genitourinary system involvement LN- Lymph nodes involvement ■ЦНС •КС =МП =ПЛУ =Прочее

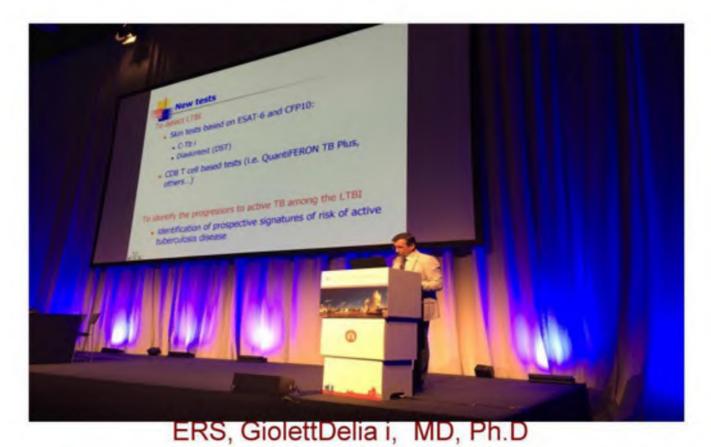
In countries where BCG vaccination is carried out, it is recommended to use IGRAs tests more widely for the diagnosis of Latent Tuberculosis Infection.

It is important to identify high-risk groups of children for the country.



http://apps.who.int/

Всемирная организация здравоохранения, 2015 г.


Всемирная организация здравоохранения, 2018

New-generation immunological tests

(sensitivity 78-93%; specificity- 87-99%)

The information provided is not an advertisement

Translational Research Unit, Department of Epidemiology and Preclinical Research, "Lazzaro Spallanzani" National Institute for Infectious Diseases (INMI), IRCCS, Rome, Italy

>> НЕПРЕРЫВНОЕ ОБРАЗОВАНИЕ СПЕЦИАЛИСТОВ ЗДРАВООХРАНЕНИЯ

IGRA-SKINTEST (C-Tb)

OVERVIEW OF SKIN TEST PRODUCTS

	C-Tb (SSI, DK)	DIASKINTEST (Pharmstd, Ru
Development	Phase III	On market (Ru, Ukr, Kazak)
Composition	rdESAT-6 + rCFP10	rESAT-6:CFP10
Expression system	L. Lactis	E. Coli (his-tag?)
CIA-SI C passions Subar perfectors		ALEXONAMEON'

- Russian scientists have developed recombinant protein CFP10-ESAT6, produced by Echerichia coli BL21(DE3)/pCFP-ESAT - Diaskintest (DST)
- DST used as skin test, the same way as the Mantoux test
- Dosage = 0.2 mcg/0.1 ml
- The advantages of DST-test are: simplicity of using and low expenses.
- DST-test is registered in Russia for all ages and included in some screening programs

The legal framework regulating works on early diagnostics and prevention of TB in children has been updated in the Russian Federation

МИНИСТЕРСТВО ЗДРАВООХРАНЕННЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (Минээрая России)

ПРИКАЗ

21 walna 1014,

= 125H

Moreon

Об утперждении

национального калемларя профилактических прививок

в календаря профилактических привилок по завщемическим показаниям

В соответствии со статьвым 9 м 10 Федерального такона от 17 сеятибря 1998 г. 3м 157-ФЗ «Об мимунопрофилактиве инфекционных болетней» (Собрание акомодательства Российской Федерации, 1998, № 38, ст. 4736; 2000. № 33, ст. 3348, 2003. № 2, ст. 167; 2004, № 35, ст. 3607; 2005, № 1, ст. 25; 2006. № 27, ст. 2879, 2007, № 43, ст. 5084; № 49, ст. 6070, 2008. № 30, ст. 3616; № 52, ст. 6236; 2009. № 1, ст. 21, № 30, ст. 3739; 2010. № 50, ст. 6599; 2011, № 30, ст. 4590; 2012, № 53, ст. 7589; 2013, № 19, ст. 2331; № 27, ст. 3477; № 48 ст. 6165; № 51, ст. 6688) приказывающей м 19, ст. 2331; № 27, ст. 3477; № 48 ст. 6165; № 51, ст. 6688) приказывающей ст. 6000 ст. 600

1. Утвеплить:

ивциональный календарь профилактических прививок согласмо приложению $\gg 1$:

календарь профилактических прививок по эпидемическим показаниям сопласно приложению № 2.

2. Приснать утразнашим смяу приказ Министерства здравоохранения и социального развития Российской Федерации от 31 января 2011 г. № 51н «Об утвершления национального календаря профилактических прививок и календаря профилактических прививок по эпидемических показаниям (в соответствии с писказаниям России от 17 февраля 2011 г. № 01/8577-ДК

в государственной регистрации не нуждается).

В.И. Скворцова

A new national immunization schedule was approved in 2014

ECOMA HEPHA

Registered in the Ministry of Justice of the Russian Federation on May 31, 2017

Registration No. 46909

APPROVED by the

Order of the Ministry of Health

of the Russian Federation of March 21, 2017 No. 124н

THE PROCEDURE AND TERMS OF PREVENTIVE MEDICAL EXAMINATIONS OF POPULATION, AIMED AT TB DETECTION

- 8. Профилактические осмотры представляют собой комплекс медицинских вмешательств, направленных на выявление патологических состояний, свидетельствующих о наличии туберкулеза, с применением следующих методов обследования в зависимости от возраста:
- а) дети в возрасте от 1 до 7 лет (включительно) иммунодиагностика с применением аллергена бактерий с 2 туберкулиновыми единицами очищениого туберкулина в стандартном разведении;
- б) дети в возрасте от 8 до 14 лет (включительно) иммунодиагностика с применением аллергена туберкулезного рекомбинантного в стандартном разведении;
- в) дети в возрасте от 15 до 17 лет (включительно) иммунодиагностика с применением аллергена туберкулезного рекомбинантного в стандартном разведении или реитгенологическое флюорографическое исследование органов грудной клетки (легких);

Government Decree of August 9, 2017 No. 952 "Concerning the Annulment of Certain Acts of Legislation of the Russian Federation"

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕЛЕРАЦИИ

ПОСТАНОВЛЕНИЕ

от 9 августи 2017 г. 26 952

О призначая утразващиму силу от вельных волижений актов Привательства Российской Федерации

Привительство Российской Фелеровии в остинованет!

1. Признать утратиливные свлу

 Абтан второй грунитания постановления Привительстви Российской Федерации от 25 декабря 2001 г. № №2 "О реалимации Федерального мноми "О предупреждении распространения туберкулети в Российской Федирация" (Собрание тиконолительства Российской Федерации, 2001,

Федерация" (Собрание шкомодательства Российской Федерации. 2001). М 53, ст. 1183;
подвушкт з пункта 32 изменений, воторые вмосится в подвушкт з пункта 32 изменений, воторые вмосится в подвушкт з пункта 32 изменений в федерации в связы с совершенствовацием тосударственного управления. Управительства Российской Федерации от 30 денибря оскланователном грамическогом объектом объектом

1. To declare to be no longer in force: paragraph 2 of clause 1 of the Russian Federation Government Decree of December 25, 2001 No. 892 "Concerning Implementation of the Federal Law "On Prevention of Tuberculosis Distribution in the Russian Federation" (Collected Legislation of the Russian Federation, 2001, No. 53, p. 5185)";

See The procedure and terms of preventive medical examinations of population, aimed at TB detection, approved by the Order of the Ministry of Health of the Russian Federation of March 21, 2017 No. 124H See. sanitary and epidemiological rules SP 3.1.1295-03 "Prevention of tuberculosis" approved by the Chief Sanitary Officer of the Russian Federation on April 18, 2003.

1. This Procedure and terms specify the main requirements to preventive medical examinations of citizens of the Russian Federation, foreign citizens and persons without citizenship (hereinafter population), aimed at detection of tuberculosis.

Results of TB infection screening in children and adolescents

Screening of children and adolescents using the recombinant tuberculosis allergen in 65 territories of the Russian Federation (2010-2012)

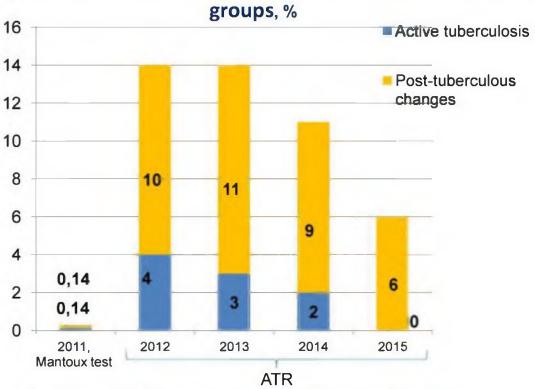
	Year			
	2010 abs (%)	2011 abs (%)	2012 abs (%)	Total abs (%)
Tested	449,353	868,606	950,235	2,262,194
Positive reactions ATR	48,735 (10.8)	122,758 (14.1)	129,012 (13.6)	300,505 (13.3)
Patients Detected	1033 (0.2)	1598 (0.2)	2109 (0.2)	4740 (0.2)

Results of the test with recombinant tuberculosis allergen in the groups under follow-up in tuberculosis dispensaries

Follo				
w-up		Year		
group		2010	2011	2012
S		abs (%)	abs (%)	abs (%)
	Under follow-up in			
	tuberculosis dispensary	1983	2766	2882
	since			
	Tested	1460 (73.6)	2444 (88.4)	2754 (95.6)
	Positive reactions	1344 (92.1)	2201 (90.1)	2555 (92.8)
	Under follow-up in			
	tuberculosis dispensary	399	912	1262
II	since			
	Tested	339 (85.0)	885 (97.0)	1241 (98.3)
	Positive reactions	201 (59.3)	549 (62.0)	834 (67.2)
	Under follow-up in			
	tuberculosis dispensary	169,031	214,219	211,879
III	since			
	Tested	87,375 (51.7)	180,100 (84.1)	188,504 (89.0)
	Positive reactions	24,282 (27.8)	48,253 (26.8)	54,742 (29.0)

First conclusions:

- 1. Positive and doubtful ATR reactions are observed 18 times less often, as compared with tuberculin.
- 2. Higher efficacy of TB detection was observed, as compared with conventional screening.
- 3. Positive ATR reactions in patients of general hospitals were observed more than twice as frequently, as compared with children and adolescents attending schools and secondary educational institutions.


V.A. Aksenova et al., 2011

2017 – long-term outcomes of the use of recombinant tuberculosis allergen for TB infection screening using ATR (ESAT6/CFP10)

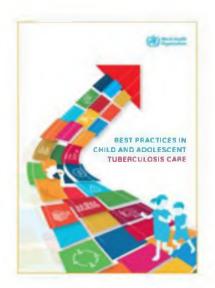
Regions	Stavropol Territory
Children and adolescents	- children from 8 to 17 years,- attending schools of the city of Stavropol.
n	97,634
Design	full-design study – children and adolescents were examined using ATR, – the results were compared with previously obtained results of Mantoux test.

V.A. Aksenova, N.N. Moiseeva et al., 2017.


The proportion of persons with a specific abnormality in risk

*a clear trend to decrease in proportion of a specific abnormality identified using ATR test, p = 0.0216.

V.A. Aksenova, N.N. Moiseeva et al., 2017.


Incidence of tuberculosis in Russia Per 100 000 of the corresponding population

Conclusions:

- 1.The transition to screening with recombinant tuberculosis allergen in children above 8 years ensured improvement of early TB diagnostics quality.
- 2.No cases of missed local TB forms in evaluation of long-term outcomes of the use of ATR for TB screening upon reaching adolescence were observed during photofluorographic examinations.
- 3.The number of children aged 8–17 years put under dispensary observation in the TB risk group decreases in case of transition to screening using ATR.

V.A. Aksenova, N.N. Moiseeva et al., 2017.

Best practices in child and adolescent Tuberculosis care 2016-2020 гг.

Conclusion

- Application of a new skin test with recombinant tuberculosis allergen in TB infection screening ensured significant (four-fold) increase in quality of early diagnostics of a specific abnormality, as compared with tuberculin diagnostics.
- 2. Implementation of a new skin test ensured identification of children and adolescents with post-tuberculous changes, previously missed during tuberculin diagnostics.
- 3. Application of a skin test with ATR in TB infection screening ensured significant decrease in the number of patients requiring a referral to a TB specialist and increase in feasibility of follow-up examination and preventive treatment.
- Timely treatment and prevention as per results of screening with ATR during several years ensured decrease in TB morbidity rate in children and adolescents.

Члены рабочей группы по делам детей и подростков в мировом сообществе

Annual meeting of the Child and Adolescent TB working group Wednesday 24 October 2018, The Hague, The Netherlands

Russia: M.D, PhD, Anastasia Samoylova, First Deputy Director of the National Medical Research Centre of Phthisiopulmonology and Infectious Diseases.

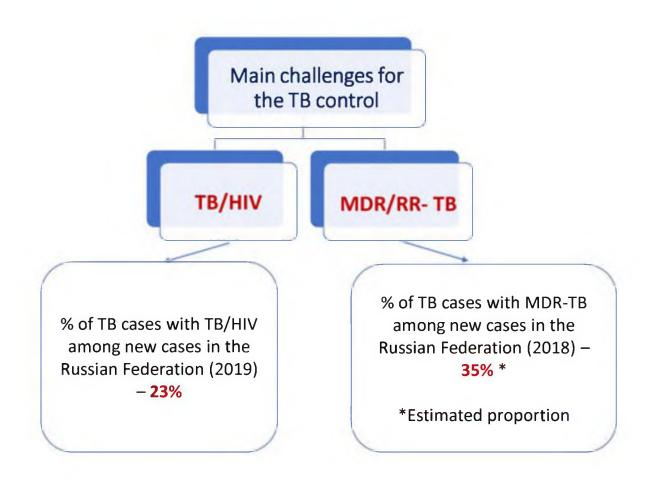
Federal State Budgetary Institution
"National Medical Research Center of
Phthisiopulmonology and Infectious
Diseases" of the Ministry of Health of
the Russian Federation

Russian experience TB treatment: multisectoral approaches

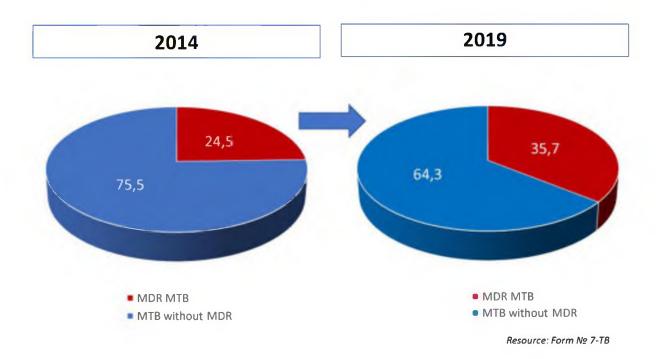
M.D, PhD, Anastasia Samoilova, First Deputy Director

Russian Federation

Tuberculosis treatment success rate in the Russian Federation and Global


Treatment success rate	Global	Russian Federation
New and relapse cases registered in (2018)	85%	69%
HIV-positive TB cases (2018)	76%	44%
MDR-TB cases (2017)	57%	55%

Global indicators of the effective TB treatment

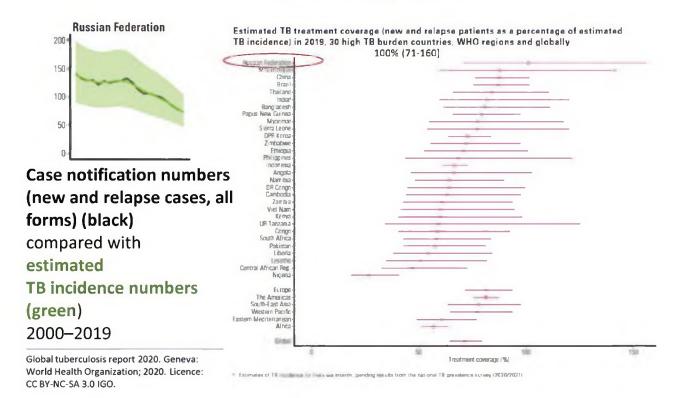

- Treatment success rate
- not less than 85%*
- •Treatment success rate MDR-TB **75%****

^{*}Roadmap to prevent and combat drugresistant tuberculosis. The Consolidated Action Plan to Prevent and Combat Multidrug- and Extensively Drug-Resistant Tuberculosis in the WHO European Region 2011–2015, WHO, 2011

^{**} Global strategy and targets for tuberculosis prevention, care and control after 2015, WHO, 2013

MDR-TB cases rate among new cases in the Russian Federation (2014, 2019)

Tuberculosis treatment in the Russian Federation


- Complex treatment
- Personalized approach to the treatment regimens composition in accordance with Mycobacterium tuberculosis drug-resistance type
- Treatment regimens which include new drugs

Мы благодарны за проявленное Вами лидерство в сфере борьбы с проблемой устойчивости к противомикробным препаратам, выразившееся в проведении пересмотра национальных нормативных документов и рекомендаций по клииическому ведению больных М/ШЛУ-ТБ. Важными вехами в этой связи стали проведение уникального консультатнвного процесса Министерства здравоохранения и Всемирной организации здравоохранения в рамках деятельности Рабочей группы высокого уровня по ТБ в Российской Федерации и утверждение Вами приказа №951 от 29 декабря 2014 г.

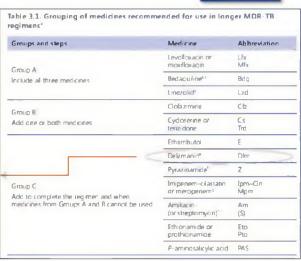
LETTER from Zsuzsanna YAKAB, WHO Regional Director for Europe, to the Minister of health of the Russian Federation, V. I. SKVORTSOVA, dated 15 June 2015

Notifications of new and relapse cases
TB treatment coverage (notified/estimated incidence), 2019

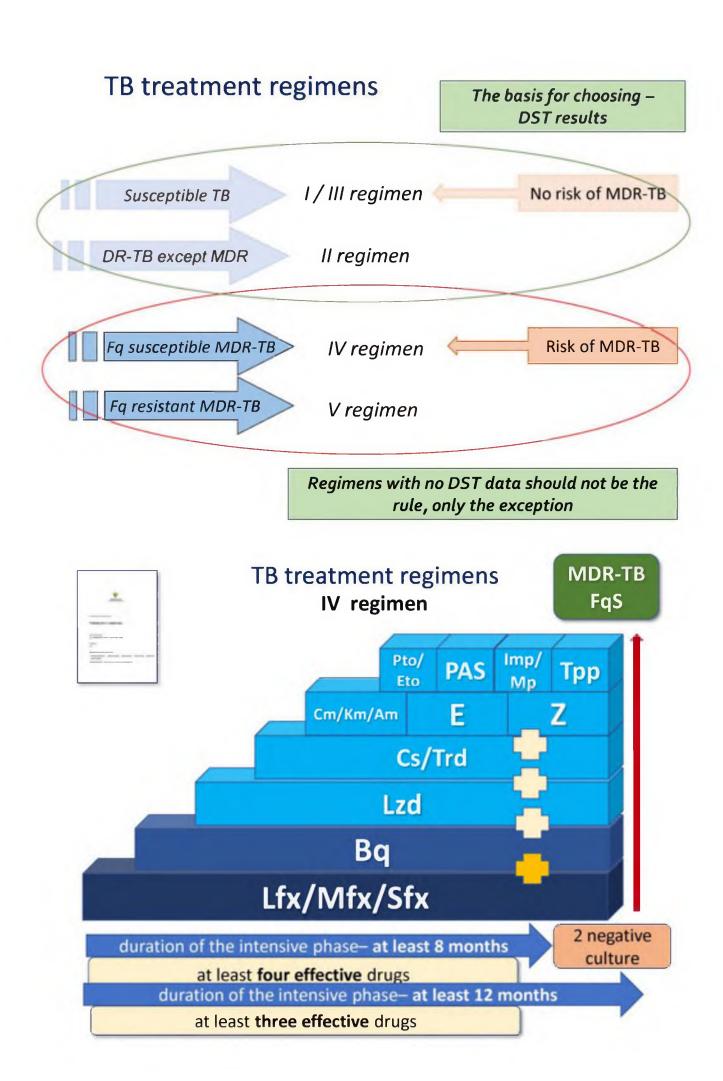
Clinical guidelines:

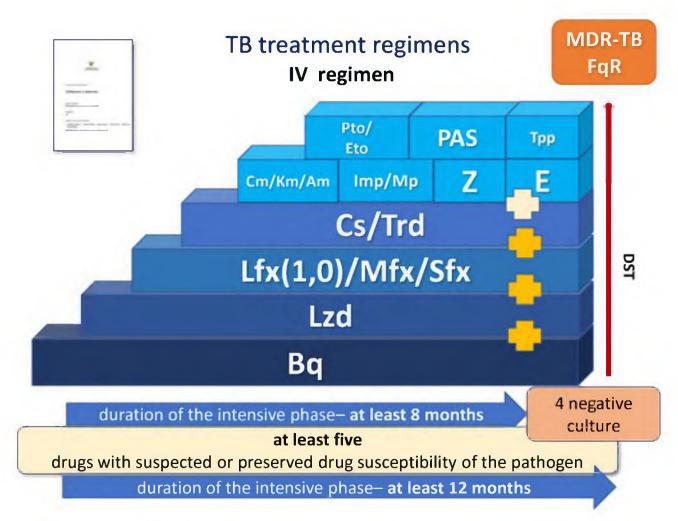
 Developed in accordance with existing regulatory documents and available on the website

http://cr.rosminzdrav.ru

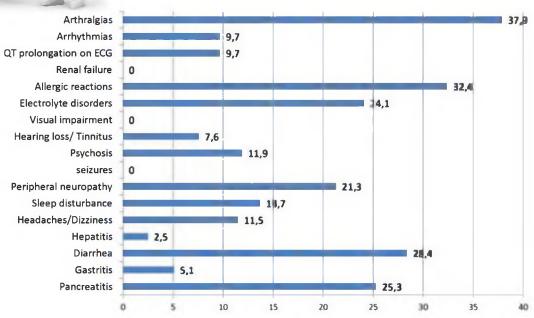


<u>.</u>


Tuberculosis treatment



Medicines recommended for inclusion to MDR-TB treatment regimens				
Priority medicines	levofloxacin moxifloxacin OR sparfloxacin	Lfx Mfx Sfx		
	bedaquiline	Bq		
	inezolid	Lzd		
	cycloserine OR terizidone	Cs Trd		
Additional medicines	ethambutol pyrazinamide amikacin capreomycin kanamycin imipenem—cilastatin meropenem prothionamide/ethionamide p-aminosalicylic acid	E Z Am Cm Km Imp Mp Pto/Eto		


Delamanid Registered in Russia 08.05.2020

Adverse events of tuberculosis treatment with M/XDR-TB pathogen

(% of those taken for treatment)

I. Vasilyeva, A. Samoilova, 2017

Increasing TB patients treatment adherence

 Social support programs for tuberculosis patients with MDR pathogen in all regions of the Russian Federation

Support of TB patients upon release from the penitentiary system

Hospital replacement technologies (home hospital, day hospital,

video-observed therapy)

Treatment without control reduces effectiveness by 14%

Treatment with periodic monitoring of drugs intake

- by 9%

<u>Toczek A. Strategies for reducing treatment default in drug-resistant tuberculosis: systematic review and meta-analysis.</u>
<u>Int J Tuberc Lung Dis.</u> 2013 Mar;17(3):299-307. doi: 10.5588/ijtid.12.0537. Epub 2012 Dec 4.

Temporary guidelines for providing TB care in the context of a new coronavirus pandemic

Approved by:

Presidium of the Russian society of phthisiologists 28.04.2020
Presidium Of the Association of phthisiologists 28.04.2020

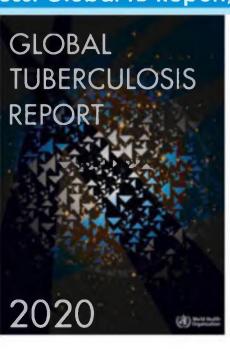
Effective TB treatment

Measures to combat TB/ HIV co-infection

Measures to increase adherence to TB treatment

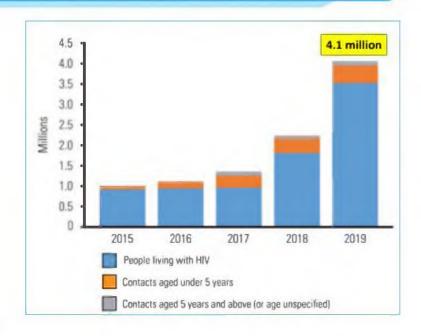
TB prevention Global policies

International Conference of Experts from Russia and ASEAN Member States


16-11-2021
Dr.Avinash Kanchar
WHO Global TB Programme

Global Progress: Global TB Report, 2020

Mobile app in English, French, Russian Apple App store:

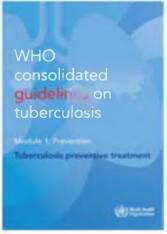

Google Play store:

talige t&hiren US&gi-US

Number of people provided TPT globally yearly (2015–2019)

WHO guidance

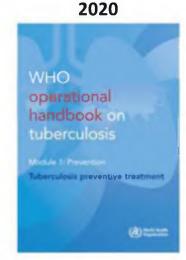
Evolution of WHO guidelines for TPT


2020 TPT guidelines

18 recommendations on **4 critical steps** of the TB preventive care pathway:

- Identify people at risk
- Rule out TB disease
- Test for TB infection
- TPT options

(Research gaps)



2020 TPT operational handbook

- Provides complementary
 details on TPT critical to the
 implementation of different
 elements of PMTPT e.g.
 contact tracing, drug dosages,
 safety monitoring, programme
 indicators
- Collates evidence to address
 FAOs

GUIDELINES

https://www.who.int/publicationsdelail/who-consolidated-guidelineson-tuberculosis-module-1-preventiontuberculosis-preventive-treatment

2020 TPT guidelines

The 18 recommendations on TPT in the 2020 update cover critical steps in programmatic management that follow the cascade of preventive care. Key changes include

- updated TPT options for people of all ages and HIV status, including a new regimen of 1-month daily rifapentine and isoniazid.
- commentary on how different regimens can be used in different TB burden settings with due attention to the exclusion of active TB, confirmation of infection, protection from re-infection and prevention of health inequities;
- conclusions, from the latest evidence, that pregnancy does not disqualify women living with HIV from receiving TPT and that a systematic deferral of isoniazid preventive treatment till after delivery would deprive them of significant protection when they are highly vulnerable to TB. A need for more research in this area is underlined;
- a single algorithm harmonizing key decision points on testing for TB infection, screening, chest radiography and TPT in the main populations at risk;

Operational limitations that need to be overcome by countries to achieve global targets are highlighted and discussed in greater detail in the **operational handbook** of TPT that is being released concurrently.

HANDBOOK

https://www.who.in/oublicationsdetail.who-operational-handbook-ontuberculosis-module_1 preventiontuberculosis-negative-treatment

Identify people at risk

2020 TPT guidelines – *Identify people at risk*

People living with HIV

- Adults and adolescents (>10y) [regardless of ARV, pregnancy, previous TB treatment, immunosuppression and availability of test for TB infection]*
- Infants aged < 12 months who are in contact with TB*
- Children aged ≥ 12 months once TB disease is ruled out
- All children who successfully completed treatment for TB disease

Strong recommendation

2020 TPT guidelines – *Identify people at risk*

Household contacts of pulmonary TB (bacteriologically confirmed)

- Children < 5 years*
- Individuals aged ≥ 5 years
- Exposed to multidrug-resistant tuberculosis

* Strong recommendation

TB risk among Household contacts of TB patients

Pooled estimates of risk by **age-group** and **baseline infection status**, compared with the **general population**

	LTBI-positive at baseline				Regardless of baseline LTBI status			
Age (years)	Follow-up < 12 months		Follow-up < 24 months		Follow-up < 12 months		Follow-up < 24 months	
	No. of studies		No. of studies	Risk ratio	No. of studies	Risk ratio	No. of studies	Risk ratio
General population	-	1.0 (reference)	-	1.0 (reference)	-	1.0 (reference)	-	1.0 (reference)
0-4	2	24.3 (0 73–811 0)	3	22.9 (7.7–68.6)	3	25.9 (16 9–39.7)	5	14.8 (9.8–22.3)
5–14	2	27.1 (17.5–54 ₋ 1)	3	8.2 (2.3–29.4)	3	24.1 (16.9–34.4)	5	6.3 (2.9–13.7)
≥ 15	1	30.7 (17.5–54.1)	2	13.4 (9.5–18.8)	1	24.7 (14.2–43.0)	3	11.7 (7.6–18.0)

2020 TPT guidelines – *Identify people at risk*

Other risk indicating systematic testing & TPT

- People initiating anti-TNF treatment, on dialysis, or preparing for an organ or haematological transplant, or who have silicosis*
- Prisoners, health workers, immigrants from countries with a high TB burden, homeless people and people who use drugs
- No systematic testing & treatment in: diabetes, harmful use of alcohol, tobacco smoking, underweight

Strong recommendation

Recommended target populations for TPT

Priority target populations

1. PLHIV

- Adults, adolescents and children who are household contacts of people with bacteriologically confirmed pulmonary TB cases
- 3. Clinical indications
 - Silicosis
 - Anti-TNF treatment
 - Dialysis
 - Transplantation

World Health Organization

Other target populations

- 1. Prisoners
- 2. Health care workers
- 3. Immigrants from countries with a high TB burden
- 4. Homeless people
- 5. People who use illicit drugs

No systematic TPT

- Diabetics
- People with harmful alcohol use
- tobacco smokers and
- underweight

Rule out TB disease

Recommendation to rule-out TB disease

PLHIV no current cough, fever, weight loss or night sweats Infants and children living with HIV poor weight gain, fever or current cough or who have a history of TB contact should be evaluated for TB

no current cough, fever, weight loss or night sweats

Chest radiography

Chest X ray may be used in TB screening- PLHIV on ART/contacts +5

The absence of clinical signs and chest X ray abnormalities may be used to rule out TB before starting TPT

Contacts 5+

and other at

risk groups

PLHIV on ART

Chest radiography may be offered to PLHIV on ART and TPT given to those with <u>no abnormal radiographic</u> <u>findings</u>

Subgroup	Type of screening	No. of studies	Pooled sensitivity	Pooled specificity (%) (95% CI)	Negative predictive value for TB prevalence (%)			
			(%) (95% CI)	(70) (9570 CI)	1	5	10	20
	Symptom screening alone	7	51.0 (28.4;73.2)	70.7 (47.8;86.4)	99.3	96.5	92.8	85.2
On ART	Symptom screening plus abnormal chest radiography	2	84.6 (64 7 92 9)	29.8 (26.3;33.6)	99 5	97.4	94.6	88.6
	Symptom screening alone	15	89.3 (82.6,93.6)	27.2 (17.3;40.0)	99.6	98.0	95.8	91.1
Not on ART	Symptom screening plus abnormal chest radiography	5	94.3 (76.2;98.8)	20.1 (7.6,43.8)	99.7	98.5	97.0	93.4
Pregnant women	Symptom screening alone	4	27.1 (16.3;41.7)	82.4 (79.1;85.2)	991	95.6	91.1	81.9
Children	Symptom screening alone	1	100 (76.8;100)	4.3 (1.8:8.7)	100	100	100	100

Chest radiography should not be considered barrier for initiating preventive treatment

HIV negative contacts aged ≥ 5 years

- ☐ Absence of any TB symptom
- ☐ Absence of any chest radiography abnormality

Algorithm	No. of studies	Sensitivity	Specificity	False negative at screening	Negative predictive value after negative screening	False positive at screening
Chest radiography: any abnormality	7	0.941	0.868	12	0 999	1294
Chest radiography: abnormality suggestive of TB	6	0 893	0.922	21	0.998	764
Any cough	10	0.627	0.775	75	0.990	2205
Cough ≥ 2-3 weeks	6	0.382	0.943	124	0.987	559
Any TB symptom	11	0.730	0.766	54	0.993	2303
Any TB symptom plus any chest radiography	+	100	0.701	0	1	2930

* No data could be obtained directly from the studies included in the systematic review, thus, the estimates were interred from five studies of both chest radiography and symptom screening.

Test for TB infection

2020 TPT guidelines – Test for TB infection

- Either a TST or IGRA (QuantiFERON®-TB Gold and T-SPOT®.TB) can be used to test for TB infection
- A test for TB infection is not a requirement for initiating TPT in PLHIV or individuals aged < 5 years in contact with people with active TB

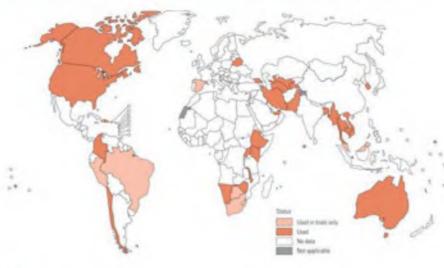
TPT options

2020 TPT guidelines - TPT options

- 6 or 9 months of daily isoniazid*
- 3 month regimen of weekly rifapentine plus isoniazid*
- 3 month regimen of daily isoniazid plus rifampicin*
- 1 month regimen of daily isoniazid plus rifapentine (>13 Y)
- 4 months of daily rifampicin alone
- 36 months of daily isoniazid preventive treatment in PLHIV >10y in settings with high TB transmission

* Strong recommendation

TPT in children


Children <2 years*	Preferred regimen: 3RH If paediatric FDC not available: 6H	
Children <25kg (8-10 years)	Preferred regimen: 3RH If paediatric FDC not available: 6H or 3HP	
Children with HIV	3HP for older children not on protease inhibitors or nevirapine (and able to swallow tablets) or 6H (preferably using dispersible tabs)	
Older children (over 25kg)	3RH using adult FDC or 3HP using adult formulations	

^{*} Strong recommendation

Use of rifapentine in TPT regimens as of June 2020

Rifapentine registered in

- 1. China
- 2. Hong Kong SAR
- 3. DR Congo
- 4. Ghana
- 5. India
- 6. Indonesia
- 7. Mongolia
- 8. Myanmar
- 9. Philippines
- 10. Singapore
- 11. South Africa
- 12. Thailand
- 13. Turkmenistan
- 14. Uganda
- 15. USA

Several countries used local waiver mechanisms to get rifapentine when

not registered

TPT among contacts of MDR-TB patients

Approximately 90% reduction in MDR-TB incidence with TPT among contacts

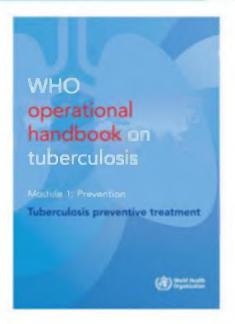
Considerations

- · intensity of exposure
- drug resistance pattern of source patient (i.e. MDR-TB confirmed bacteriologically and susceptibility to a fluoroquinolone established)
- · Ascertain TB infection using IGRA or TST

Regimen used in studies reviewed by GDG

- levofloxacin daily for 6 months with ethambutol or ethionamide
- 4R in H mono-resistance
- 6H/9H- if isoniazid susceptibility is confirmed in index patients

Clinical follow-up two years for signs and symptoms of TB


Ongoing trials -TPT for contacts of DR-TB patients

_	TB CHAMP	V-QUIN	PHOENIX
Intervention	6 month levofloxacin (Lfx) vs placebo in infants and children exposed to MDR-TB	24 weeks of Lfx vs placebo in all ages with evidence of infection	26 weeks of delamanid vs isoniazid
Age group	<5 years	All	All
Countries	South Africa	Viet Nam	11 countries
Time line for Results	End 2021	End 2022	Mid-2025
Reference	http://www.isrctn.com/!SRCTN 92634082	https://anzctr.org.au/Trial/Regis tration/TrialReview.aspx?id=36 9817&isReview=true	https://clinicaltrials.gov/ct2.show/NCT03568383

TPT operational handbook

TPT for special populations -pregnancy

Systematic review for the 2020 WHO guidelines showed

- No association of IPT with adverse pregnancy outcomes (foetal/neonatal death, prematurity, LBW, congenital anomaly) across different studies
- No increase in risks for maternal hepatotoxicity, grade 3 or 4 events or death
- deferral of TPT to postpartum period not required

- Pregnancy does not disqualify women living with HIV
- TPT can be started either antenatal and postnatal periods with due clinical care
- Routine LFT not indicated unless there are other hazards
- 4R, 3HP, triple pill combination of 6(H+ Cotrimoxazole+ B6) may be preferred TPT options
- Vitamin B6 supplementation should be given routinely to pregnant and breastfeeding women on TPT

Co-administration of 3HP and Dolutegravir

- DOLPHIN trial (**Dol**utegravir Rifapentine Isoniazid **In**vestigation)
 reported no serious adverse events
- Although co-administration caused reduced DTG blood levels, this was clinically not significant and did not require DTG dose adjustment.

http://www.croiwebcassa.org/console/player/41177?mediaType=audio&

Repeat or restart TPT

- No evidence to date on the utility of repeated courses of TPT
- In high TB transmission settings, WHO recommends 36 H (proxy for life long) for PLHIV

whipatb trial among PLHIV on ART (2019), compared effectiveness of 3HP given once (N=1802) or twice within 14 months (N=1808) Vs one course of 6H (N=404).

- Treatment completion was better with 3HP
- 24 months follow-up showed similar rates of incidence of TB, rifampicin resistant TB and mortality between those receiving 3HP once or twice

A repeat course of TPT should be considered among HIV+ or HIV- persons who previously completed a course of TPT following close contact of a TB patient

Operational also handbook collates evidence on FAQs

Adverse events

- Tiny proportion of people on TPT develop adverse events
- most are self-limiting and reversible
- shorter rifamycin-based regimens have better profile

Risk of Drug resistance

No evidence to date showing increased resistance due to PMTPT

Efficacy

- Current TPT ranges provide risk reduction of 60-90% between those who get TPT versus those who do not
- TPT saves lives: PLHIV (TEMPRANO trial) receiving IPT had a 37% lower in mortality
- Protection last between 6 to 19 years with IPT

Current opportunities for TPT scale up

- 1. Recent high-level political commitments
- 2. Recently revised guidance
- 3. Availability of rifamycin based shorter treatment
- 4. Various donor initiatives to support scale-up
- 5. Ongoing Global Fund grant development
- 6. Support from **technical** partners

Acknowledgements

TB & HIV programmes

Dennis Falzon

Matteo Zignol

Annabel Baddeley

Guideline Development Groups

TAG, patients

USAID

Other experts, donors

Thank You

• Russia: M.D, PhD, Oksana Komissarova "Central Tuberculosis Research Institute Peculiarities of Approaches to Complex Treatment of Patients with Pulmonary Tuberculosis with Co-existing Diabetes"

Peculiarities of Approaches to Complex Treatment of Patients with Pulmonary Tuberculosis with Co- existing Diabetes

Prof. Komissarova O.

Central TB Research Institute, Moscow, Russian Federation

Tuberculosis risk factors

N	RISK FACTOR	RELATIVE RISK (UNC	ATTRIBUTABLE TB CASES (MILLIONS)
1	Undernourishment	3,2	2,2
2	HIV	18	0,76
3	Smoking	1,6	0,70
4	Diabetes mellitus	1,5	0,35
5	Harmful use of alcohol	3,3	0,72

Global tuberculosis report 2019. Geneva: World Health Organization; 2019.

Diabetes mellitus - tuberculosis risk factor

The deferred immune response to MTB due to the deposition of the final glycation products on the surface of macrophage membranes;

Late MTB replication management;

Higher bacterial load on the lungs;

More cytokines and immune pathology;

More severe forms of tuberculosis with bacterial excretion.

Central TB Research Institute, Moscow, Russian Federation

MDR tuberculosis and diabetes mellitus

Tuberculosis 2019

In the world:

Resistance to R - in 465 000 patients (of these, 78% were diagnosed with MDR, the rest - PP-TB)

XDR MBT - 6.0% among MDR patients

MDR TB In the Russian Federation:

2015 - in 37357

2016 - in 37925

2017 - in 36286

2018 - in 34578

2019 - in 31390 patients.

Global Tuberculosis Report 2019. WHO/CDS/TB/2019.15

Nechayeva C. 2018r. http://www.mednet.ru/ru/czentr-monitoringatuberkuleza.html

Diabetes mellitus 2019

In the world there were 463 million patients with diabetes

In the Russian Federation: 2018

The total number of patients with diabetes was 4,584,575 (3.1% of the population of the Russian Federation), of which:

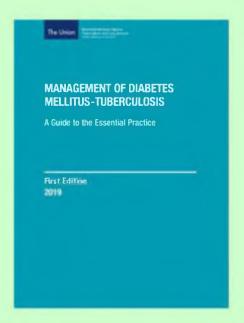
Type 1 diabetes - 6.0% (256 202), Type 2 diabetes - 92.0% (4 238 503), Other types of diabetes - 2.0%

IDF Diabetes Atlas - 9th Edition 2019
Diabetes mellitus,.2019;22(S1). DOI: 10.14341/DM221S1

Tuberculosis and diabetes mellitus

International Union Agence Substitute and Long Disease

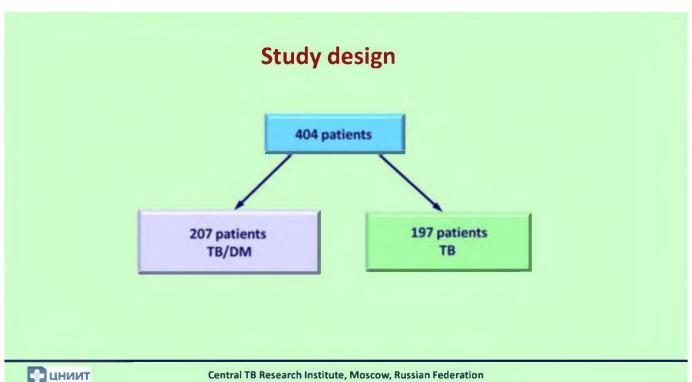
Bali Declaration on the Looming TB-Diabetes Co-Epidemic

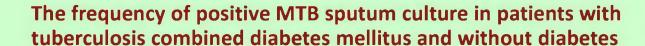

In Bali (Indonesia), on November 2-3, 2015, the first International Summit on TB and diabetes was held.

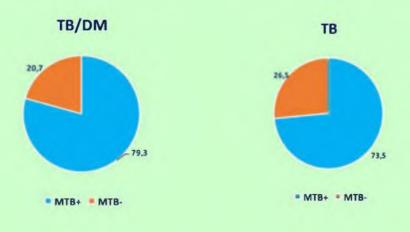
Bali's declaration on taking effective measures to combat the impending coepidemic - tuberculosis-diabetes.

http://www.worlddiabetesfoundation.org/news/bali-declaration-calls-action-against-tb-diabetes-co-epidemic

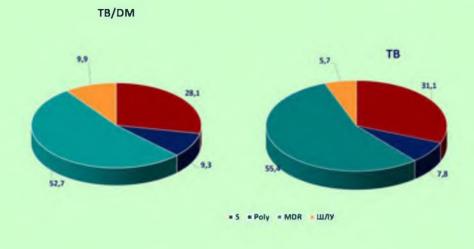
Central TB Research Institute, Moscow, Russian Federation

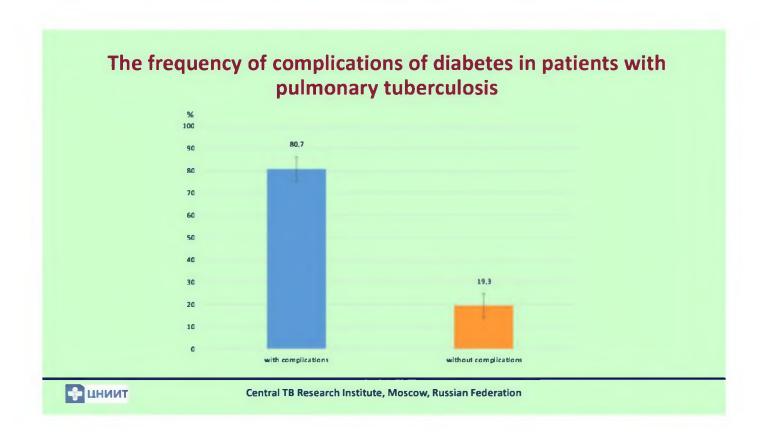


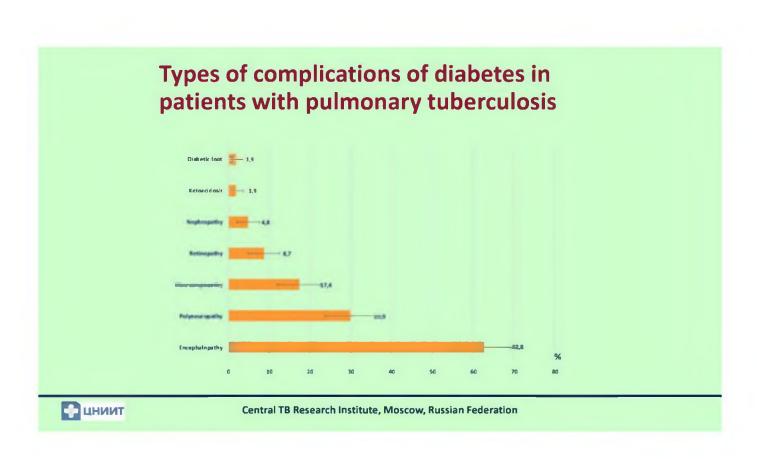

Aim


Study of the frequency and types of complications of diabetes mellitus and adverse reactions to anti-TB drugs in patients with tuberculosis combined diabetes mellitus and tuberculosis without diabetes.

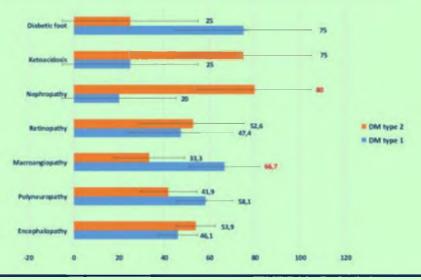
Central TB Research Institute, Moscow, Russian Federation

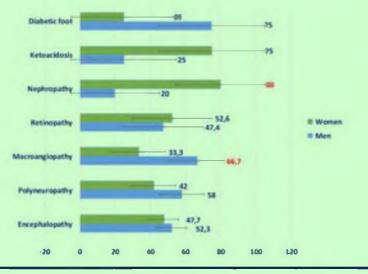


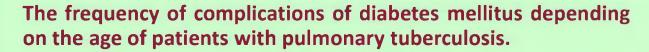


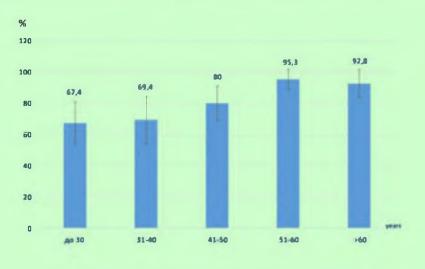

Central TB Research Institute, Moscow, Russian Federation

Spectrum of drug resistance of the MTB to anti-tuberculosis drugs

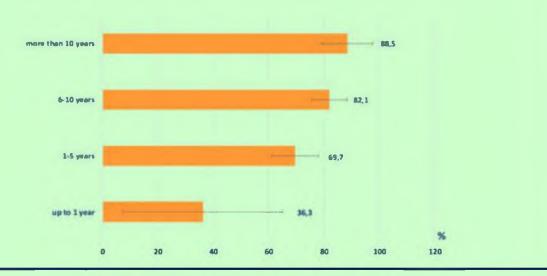







Central TB Research Institute, Moscow, Russian Federation

Types of complications of diabetes in men and women with pulmonary tuberculosis



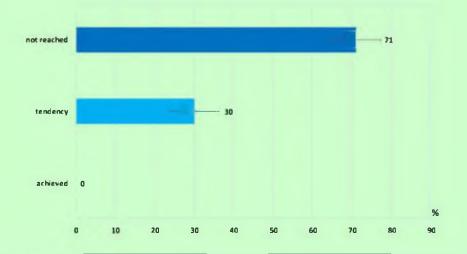
ЦНИИТ

Central TB Research Institute, Moscow, Russian Federation

The frequency of complications of diabetes in patients with pulmonary tuberculosis depending on the duration of diabetes.

🛟 цниит

Comprehensive treatment of patients with pulmonary tuberculosis combined diabetes mellitus


The treatment of patients with tuberculosis and diabetes is a complex task and requires great joint efforts of a TB specialist and an endocrinologist.

Successful treatment of tuberculosis in patients with diabetes is possible only if target levels of glucose and glycated hemoglbin are reached.

Central TB Research Institute, Moscow, Russian Federation

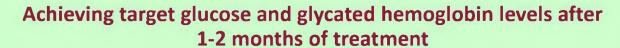
Achieving targets for carbohydrate metabolism before starting treatment for tuberculosis

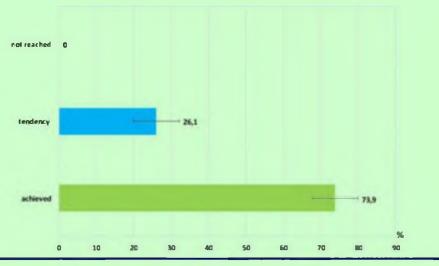
Comprehensive treatment of patients with pulmonary tuberculosis combined diabetes mellitus

1. Insulin therapy (regardless of type of diabetes).

Tuberculosis inflammation reduces the sensitivity of body tissues to insulin.

Some anti-TB drugs have multidirectional effects on antidiabetic drugs.


Central TB Research Institute, Moscow, Russian Federation


Comprehensive treatment of patients with pulmonary tuberculosis combined diabetes mellitus

The need for sugar-lowering drugs is changing.

!!! It is necessary to prescribe insulin therapy upon admission of the patient to the hospital in order to clearly correct the level of glycemia.

пинни 🛟

Central TB Research Institute, Moscow, Russian Federation

Comprehensive treatment of patients with pulmonary tuberculosis combined diabetes mellitus

2. Chemotherapy.

The presence of various complications of diabetes in this patients makes chemotherapy difficult.

To prevent adverse events, the dose of antituberculosis drugs must be selected depending on the severity of diabetic complications (retinopathy, neuropathy, nephropathy, etc.)

Chemotherapy

Chemotherapy was carried out in accordance with the sensitivity of the MTB to anti-TB drugs and individual tolerance.

With drug sensitivity of the MTB:

Intensive phase -3 H, R, Z, E (Amk) Cm

Amk- is prescribed for contraindication of the use of E (consultation of an ophthalmologist)

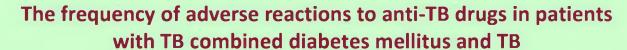
Continuation phase -4 H, R, Z.

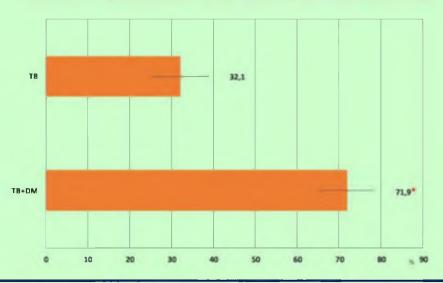
Central TB Research Institute, Moscow, Russian Federation

Chemotherapy

With MDR MTB:

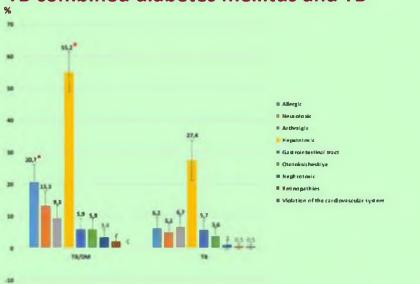
Intensive phase - Z, Lfx (Mfx), Cm (Km / Amk), Tzd, Pt (PAS) - 8 months.

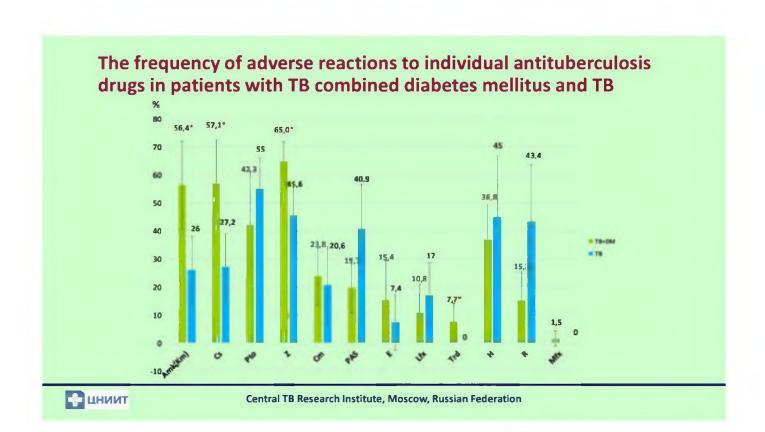

Continuation phase - Z, Lfx (Mfx), Tzd, Pt, (PAS)
12-18 months

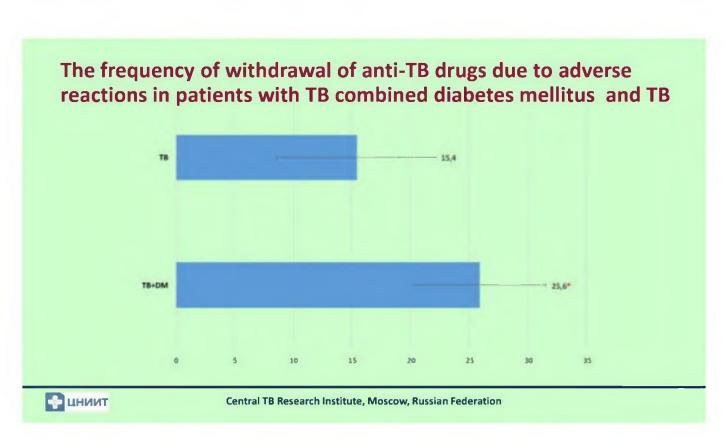

With XDR MTB:

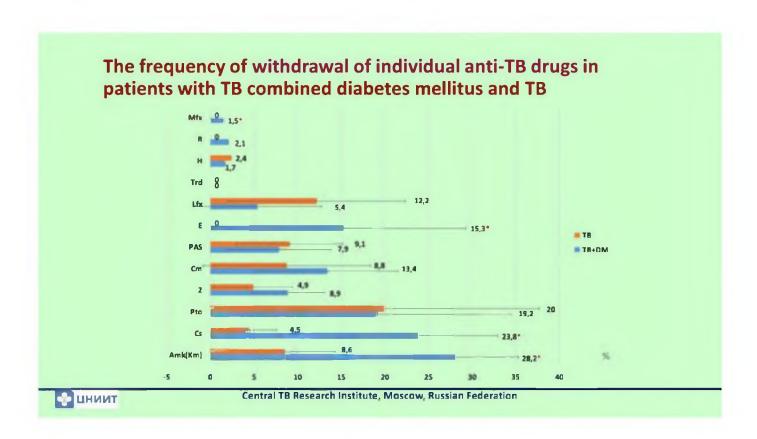
Intensive phase - Z, Mfx (Lfx), Cm, Tzd, PAS, Lzd, Bq *, (Clr, Amx) - 8 months.

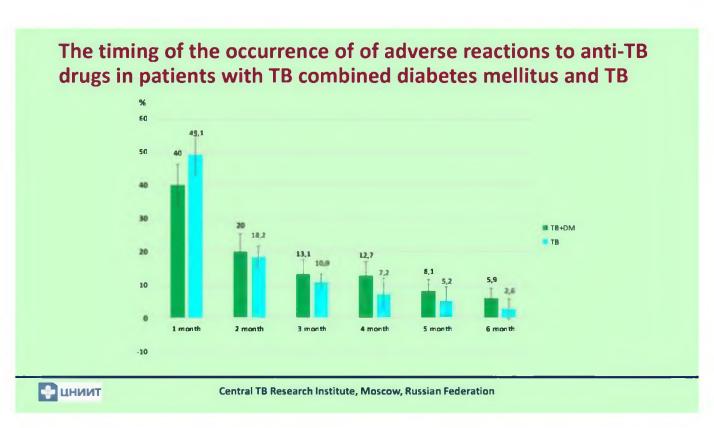
Continuation phase - Z, Mfx (Lfx), Tzd, PAS (Lzd, Clr, Amx) - 12-18 months

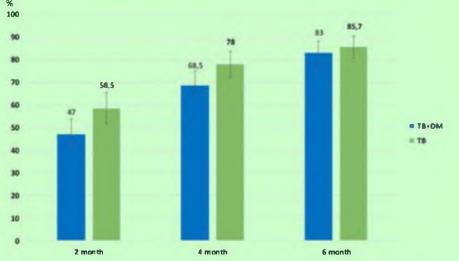




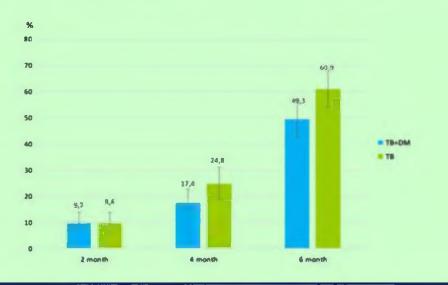

Central TB Research Institute, Moscow, Russian Federation


Types of adverse reactions to anti-TB drugs in patients with TB combined diabetes mellitus and TB




Comprehensive treatment of patients with pulmonary tuberculosis combined diabetes mellitus

- 3. Pathogenetic treatments (plasmapheresis, vitamin therapy, hepatoprotectors, angioprotectors, neuroprotectors, probiotics).
- 4. Symptomatic treatment.
- 5. Collapsotherapy.
- 6. Surgical treatment as needed

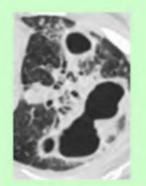

Central TB Research Institute, Moscow, Russian Federation

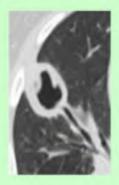
The efficacy of treatment by the negativation of sputum culture

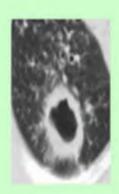
The efficacy of treatment by the close of cavities

ЦНИИТ

Central TB Research Institute, Moscow, Russian Federation


Conclusion


Despite the presence of a greater number of complications and adverse reactions to anti-tuberculosis drugs an individual approach, regular monitoring and timely correction of adverse reactions, disorders of carbohydrate metabolism, as well as complications of diabetes mellitus allows for a full course of chemotherapy for pulmonary tuberculosis and to achieve results comparable to patients without diabetes.



Central TB Research Institute, Moscow, Russian Federation

Types of caverns in patients with tuberculosis combined diabetes mellitus.

Central TB Research Institute, Moscow, Russian Federation

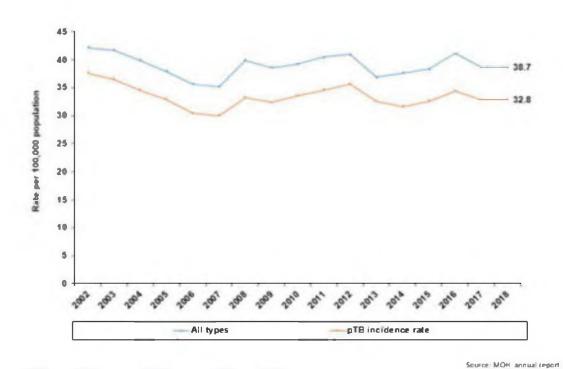
Thanks for your attention!

Central TB Research Institute, Moscow, Russian Federation

Diagnosis, treatment and prevention of TB in Singapore

16 - 17 November 2020

Dr Deborah Ng, Deputy Director A/Prof Jeffery Cutter, Director National TB Programme, Singapore



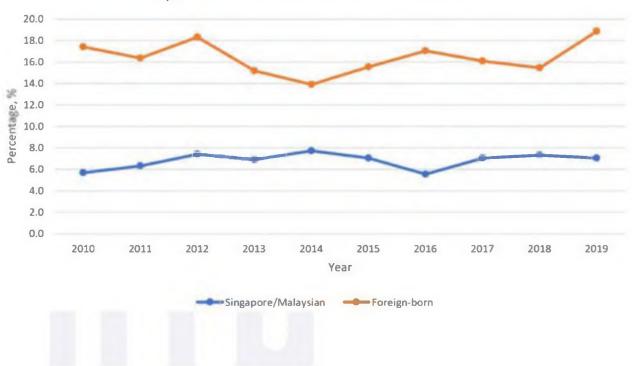
Summary

- Epidemiology of TB in Singapore
- Structure of the National TB Programme
- Detection and diagnosis of TB
- Treatment of TB
- · Prevention of TB

INCIDENCE OF TB IN SINGAPORE

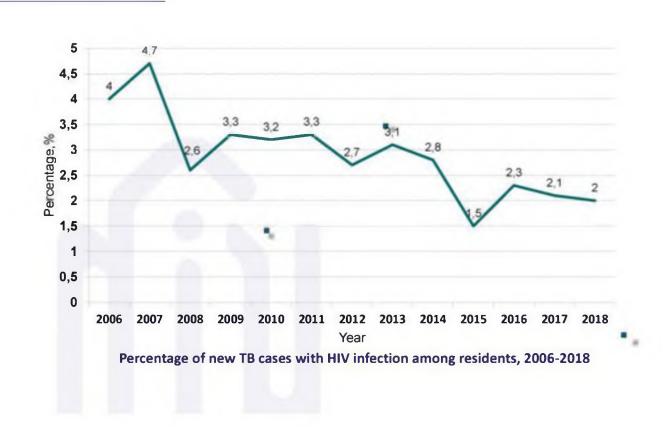
INCIDENCE OF TB IN SINGAPORE

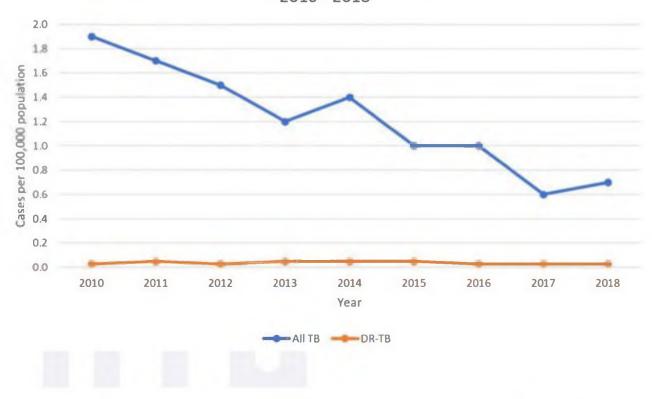
Now TR cases	by site of disease	o in Singapore	residents and lone	a stavina forois	nore 2000 2019
New 1B cases	DV SITE OF DISEAS	e in Sindabore	residents and ioni	a-staving toreid	iners. 2009-2018

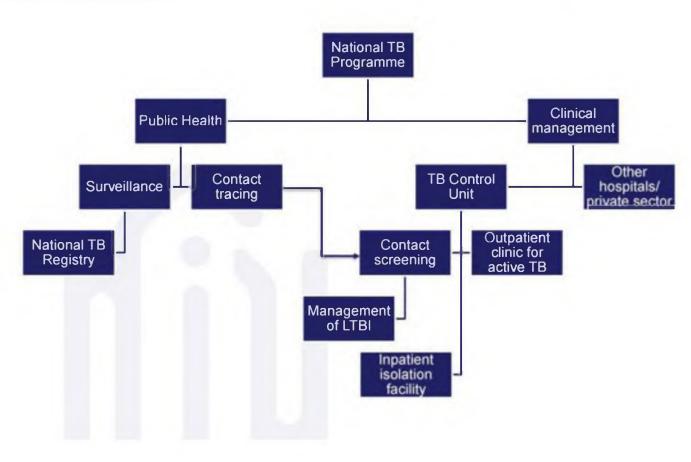

	New cases			Incidence rate per 100,000 population		
Year	Pulmonary ¹	Extra- pulmonary	Total	Pulmonary ¹	Extra- pulmonary	Total
2009	1,624	342	1,966	32.6	6.9	39.4
2010	1,727	301	2,028	34.0	5.9	39.9
2011	1,811	315	2,126	34.9	6.1	41.0
2012	1,897	306	2,203	35.7	5.8	41.5
2013	1,750	278	2,028	32.4	5.1	37.6
2014	1,705	313	2,018	31.2	5.7	36.9
2015	1,691	309	2,000	30.6	5.6	36.1
2016	1,930	380	2,310	34.4	6.8	41.2
2017	1,871	320	2,191	33.3	5.7	39.0
2018	1,858	324	2,182	33.0	5.7	38.7

¹ Pulmonary TB referred to TB of the lung parenchyma and included cases that had both pulmonary and extra-pulmonary TB.

TB RESISTANCE RATES




TB/ HIV CO-INFECTION RATES



Deaths attributable to TB among Singapore residents, 2010 - 2018

NATIONAL TUBERCULOSIS PROGRAMME

DETECTION AND DIAGNOSIS OF TB

Encourage early diagnosis of active TB

- Clinical practice guideline encourage primary care doctors to screen persons with more than 3 weeks of cough
- CXR available in polyclinics
- Diagnosis: two sputum samples (AFB smear and culture)
- Detection of resistance with rapid nucleic acid testing (GeneXpert/Rif, Hain, BDMax), DST (1st and 2nd line drugs) available at two main laboratories
- Abnormal CXR referred to specialist TB unit for evaluation

Contact screening and LTBI treatment

- Contact tracing carried out for all cases of pulmonary TB
- Done using 'stone-in-the-pond' approach
- Contacts screened using IGRA (TST in children under 2 years of age)

DETECTION AND DIAGNOSIS OF TB

Active screening

- Pre-employment screening for active TB for healthcare workers, vocational licence drivers, preschool teachers with CXR
- Entry screening for majority of long-term residents on pass application

Surveillance

- National TB Registry captures all laboratory notifications from public hospitals for positive AFB smear/ culture/ TB PCR results
- Will liaise with clinicians if no accompanying clinical notification to ensure patients are started on treatment promptly

TREATMENT OF TB

Treatment regimens and delivery

- Standard WHO regimens used for drug-sensitive and drugresistant TB
- All drug-resistant cases to be managed by the TB Control Unit (national treatment centre)
- Majority of patients placed on DOT
- Limited number on SAT, those unable to come to healthcare centre for DOT offered outreach DOT
- Increasing use of VOT

Management of comorbidities

- All patients screened for diabetes and HIV
- Patients with HIV started early on anti-retroviral therapy (unless contraindications present)

TREATMENT OF TB

Surveillance

- National TB Registry conducts surveillance for all TB cases monthly treatment progress, mode of delivery, regimen type
- Reminders sent out to clinicians if not updated

PREVENTION OF TB

Prevent infection

BCG at birth as part of childhood immunisation schedule

Prevent breakdown to active TB

- Preventive therapy (PT) for those with LTBI
- Elderly and MDRTB contacts also undergo CXR screening
- Window PT for children under 5 years of age
- 6 monthly CXR surveillance for patients not on PT

Interrupt transmission

- 2 weeks medical leave for those diagnosed with TB
- Patients with MDRTB placed in isolation until two consecutive negative cultures
- Whole genome sequencing done to detect clusters of TB

CONTACT DETAILS OF FOCAL POINT

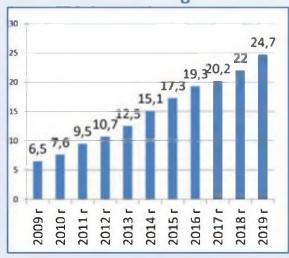
	Name	Designation	Email
1	A/Prof Jeffery Cutter	Director	Jeffery_CUTTER@moh.gov.sg
2	Dr Deborah Ng	Deputy Director	Deborah_ng@ncid.sg

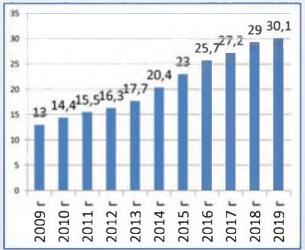
Thank you

International conference of experts from Russia and ASEAN member states "Improving the system interaction and exchange of experience in diagnosis, treatment and prevention of tuberculosis»

TB detection and diagnosis – Russian approaches

Anna Panova


Head of the Department of Laboratory Diagnostics


National Medical Research Center for Phthisiopulmonology and Infectious Diseases of the Ministry of Healthcare of the Russian Federation

Main challenges for the TB control in Russia

Proportion of patients with TB-HIV co-infection among new cases

Proportion of patients with MDR-TB among new cases

National Algorithm for laboratory diagnosis TB

Algorithm approval

- алгоритм лабораторной диагностики ТБ регулируют Минздрав России и национальное профессиональное общество
- алгоритм лабораторной диагностики был реализован по всей стране в 2014 году

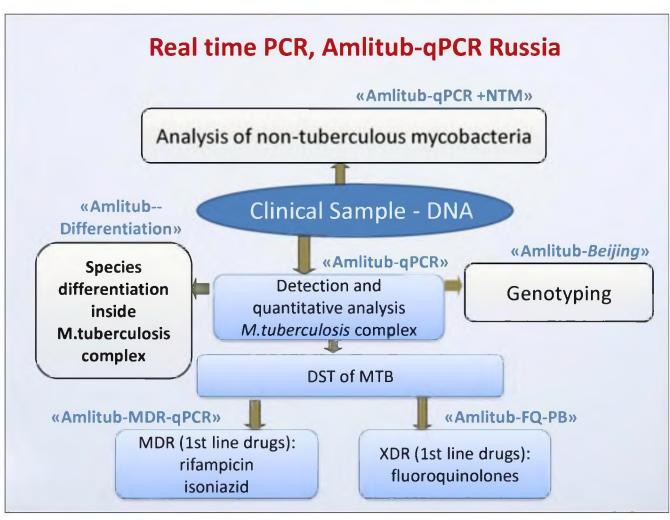
Algorithm is based

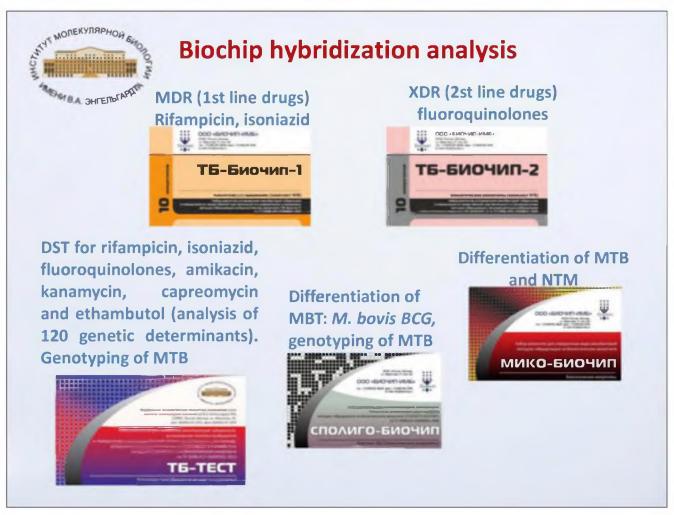
- на оценке диагностической эффективности фенотипических и молекулярно-генетических технологий, в том числе отечественных тестах
- на утвержденных схемах терапии
 федеральных клинических рекомендаций

Application of molecular-genetic methods for TB diagnostics and MDR-TB detection

Real time PCR, Russia
Amlitub-qPCR
Amplitub-MDR-qPCR (Ни R),
Amplitub-FQ-qPCR (Fq)

Method of hybridization on biochips, Russia TB-TEST (H, R, Fq, AG/CP, E)


Method of hybridization with typespecific probes (LPA)


Geno Type MTBDRPlus (Н и R), MTBDRs (Fq, AG/CP)

GeneXpert MTB/RIF

Algorithm for laboratory diagnosis TB

1. MBT detection (two samples of biomaterial):

- Microscopy AFM: 2,5-48 hours
- Xpert MTB/RIF or Amlitub-qPCR, differentiation of mycobacterium tuberculosis from

DR

non-tuberculous mycobacteria: 2,5-48 hours

• Liquid culture: 7-14 days

MTB DNA +

II. Identification of MBT resistance markers to first-line drugs

Xpert MTB/RIF: rpoB

Amplitub-MDR-qPCR: rpoB, katG, inhA

Biochip: rpoB, katG, inhA, ahpC **LPA:** rpoB, katG, inhA, ahpC

DS

pDST for first-line drugs

Liquid culture: RIF, INH, SM, PZA, EMB

II. Identification of MBT resistance markers to second -line drugs

Amplitub-FQ-qPCR: gyrA Biochip: gyrA, gyrB, eis, rrs LPA: gyrA, gyrB, eis, rrs

dr/ds 🗀

pDST for first and second -line drugs

Liquid culture: AMK, KAN, CAP, LFX, MFX (0,25; 1,0), LZD, BDQ and

PZA, EMB

Development of a network of National Reference Laboratories

April 27, 2015 three bacteriological laboratories of federal specialized research institutes received WHO certificates as Centers of Excellence Network supranational WHO reference laboratories

Since August 2019, the National Medical Research Center of Phthisiopulmonology and Infectious Diseases is a WHO collaborating center

Tuberculosis is a priority health problem in the Russian Federation

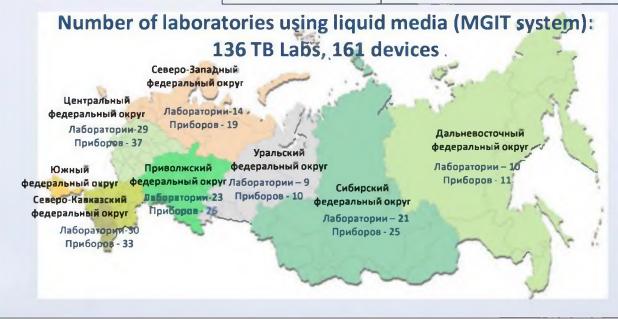
The detection and diagnosis of tuberculosis is a priority task of the Russian Ministry of Health.

Detection, diagnosis and treatment of tuberculosis - free for Russian citizens.

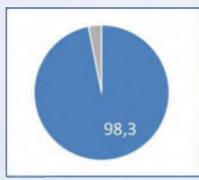
Subsidies are allocated annually from federal funds for reagents and equipment.

Number of laboratories using the genotypic method

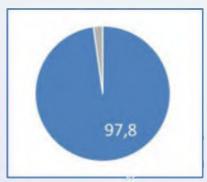
Total: 297 TB laboratories

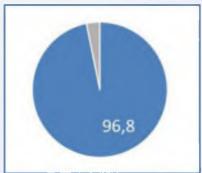

Real time PCR	Xpert MTB/RIF	ВІОСНІР	LPA
102	153	25	20 TB
TB Labs	TB Labs	TB Labs	Labs

Number of laboratories using the cultural method


Total: 280 TB laboratories using the cultural method

Number of laboratories providing DST		
First-line drugs	First and second –line drugs	
198 TB Labs	163 TB Labs	




Coverage of rapid molecular test among TB patients

Coverage of cultural method among TB patients

Coverage of DST among laboratory-confirmed pulmonary TB cases

Conclusion

The algorithm for detecting and diagnosing tuberculosis in the Russian Federation includes technologies:

- recommended by WHO (Xpert MTB | / RIF, LPA-analysis, culture method on liquid culture media in the MGIT system)
- Russian molecular technologies (RT-PCR using the Amplitub test system and hybridization with type-specific probes on biochips using the Biochip test system)

The existing equipment park in the regions of the Russian Federation and the centralized procurement of reagents, at the expense of the Federal budget, provides coverage of tuberculosis patients with modern tests, which allows you to quickly diagnose, determine the drug sensitivity of the office and determine treatment tactics, as well as monitor the effectiveness of treatment

New technologies of tuberculosis and nontuberculosis diseases diagnostics.

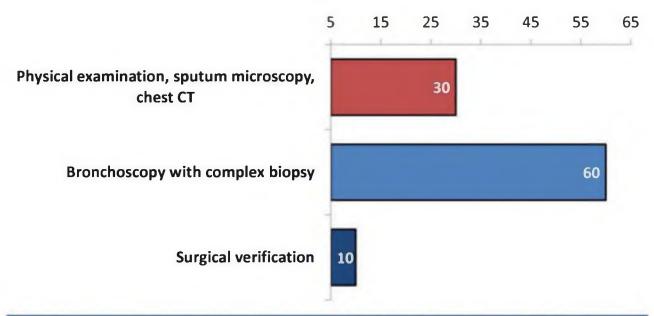
Romanov V.V. Central TB Research Institute, Moscow, Russia

Федаральное государственное бюджетное на учное ра «Цинтральный научно-исследовательский институт тубернулеза и ФГЕНУ «ЦИНИТ»

Background

Differential diagnostics of changes in the lungs due to tuberculosis (TB) or nontuberculosis (non-TB) diseases is complicated by similarities in clinical and radiological features of the diseases. That is why diagnostic errors account for 40% to 80% of observations.

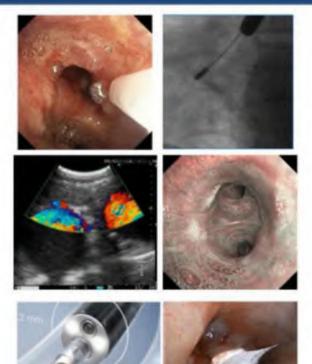
Misinterpretation of radiological findings is **common**.



Фадаральное государственное бюджетное научное учреждание
«Центрельный научно-исследовательский институт тубернулеза «

ФГБНУ «ЦНИИТ»

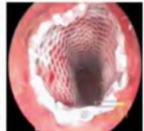
Stage diagnostics of patients with unspecified diagnosis



Bronchoscopy is a principal method of low-invasive diagnostics of lung or mediastinum diseases in patients with unspecified diagnosis

Федера нь ное государственное быд нат ное научное учраждание «Центральный научно-исследовательский институт тубаркулаза « ФГБНУ «ЦНИИТ»

The potentials of bronchoscopy – diagnostics


- High-definition (HD) bronchoscopy
- Brush biopsy
- Bronchoalveolar lavage
- Endobronchial biopsy
- Transbronchial biopsy
- Classic needle biopsy
- Endoscopic ultrasound-guided fineneedle biopsy of ITLN or pulmonary nodules
- Bronchial/lung cryobiopsy

Федеральное государственное бюджетное научное учреждание «Центральный научно-исслодоветельский институт губорнуле ы «ФГБНУ «ЦНИИТ»

The potentials of bronchoscopy – treatment

- Peribronchial injection
- Valve bronchial blockage
- Endobronchial electrosurgery
- Low-power tracheal and bronchial laser irradiation
- Tracheobronchial stenting
- Cryo-recanalization
- Tracheobronchial recanalization using high-power laser
- Bronchial thermoplasty

Many of therapeutic manipulations are guided by rigid bronchoscopy, including HD-bronchoscopy.

• Федеральное государстванное бюджетное на учное учраждение «Центральный научно-исследоватальский институт тубернулезе»

Modern diagnostic and therapeutic bronchoscopy

Diagnostics: HD-bronchoscopy

Navigation bronchoscopy for the diagnosis of peripheral lung nodules Mediastinal biopsy – classic and endosonography Bronchial/lung cryobiopsy

Endoscopic treatment of bronchial TB
Valve bronchial blockage
Stenting
Bronchial thermoplasty
Cryotherapy

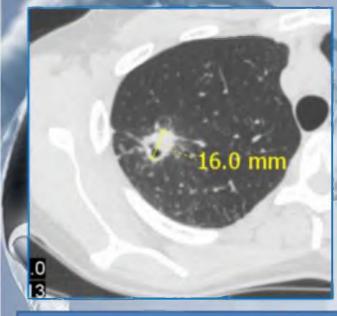
Федерельное госудерственное бы джетное неучное учреждение
«Центрельный неучно-исследовательский институт тубервулева»

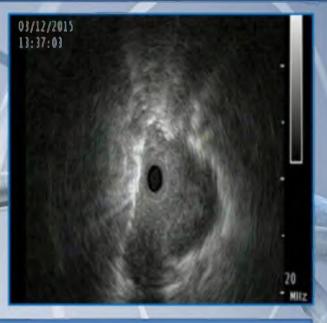
ФГБНУ «ЦНИИТ»

Peripheral pulmonary nodules: endosonography

- High effectiveness of endobronchial biopsy up to 80%
- Description of internal structure of nodules
- Risk of pneumothorax development less than 2%
 - Easy personnel training and low cost
 - Absence of irradiation

Endoscopic ultrasound mini-probes improve the diagnosis of pulmonary nodules from 50 to 80% (Chan 2009, Lin 2015)


Effectiveness of diagnosis of peripheral pulmonary nodules at Central TB Research Institute:


88% (Shabalina I.Yu., 2019)

• Оедеральное государственное бюджетное неучное учреждание « Центральный научно-исследоватальский институт туберкулеза »

Peripheral pulmonary nodules: endosonography

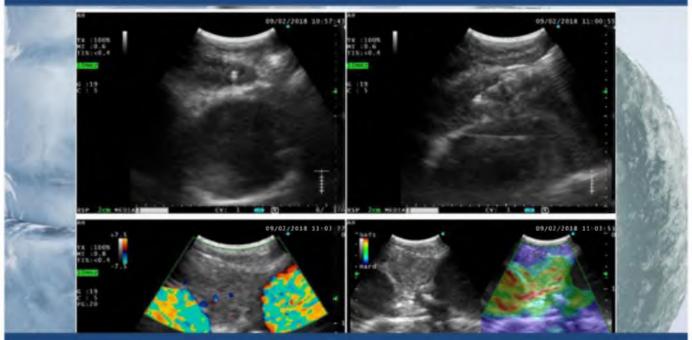
A female patient aged 32, non-smoker.
Suspicion of tuberculoma in S2 of the right lung.
The bacteriology studies of samples obtained by navigation bronchoscopy established mycobacteriosis

(M. kansasii)

Федаральное государственное бизджатное научное учрежданне
«Цантральный научно-исследовательский институт тубераулаза»

ФГБНУ «ЦИНИЯТ»

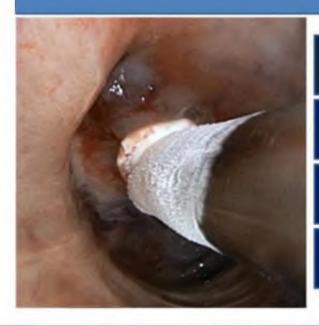
Mediastinal diseases – classic biopsy



The Endoscopy Department of the institute resumed:
routine rigid transbronchial needle aspiration biopsies
effectiveness of such manipulations is over 80%
(Sivokozov I.V., 2019)

Федеральное государственное биоджетное неучное учреждение ше транна неучно-исследоватальский институт туберкулева ответитут циминт.

Mediastinal diseases – the potentials of verification


The specialists of the Endoscopy Department performed first-ever in Russia: mediastinal puncture in children aged 2-5 (Sivokozov I.V., 2018) mediastinal puncture through great vessels

contrast-enhanced endoscopic ultrasound of the mediastinum (first-ever in the world) effectiveness of such manipulations is over 93% (Sivokozov I.V., 2019)

Cryo technologies in bronchology

Kpuo (Greek) - «cold» Exposing to low temperatures with diagnostic or therapeutic effect

Diagnostics: bronchus/lung/pleura cryobiopsy

> Treatment: bronchial cryorecanalization

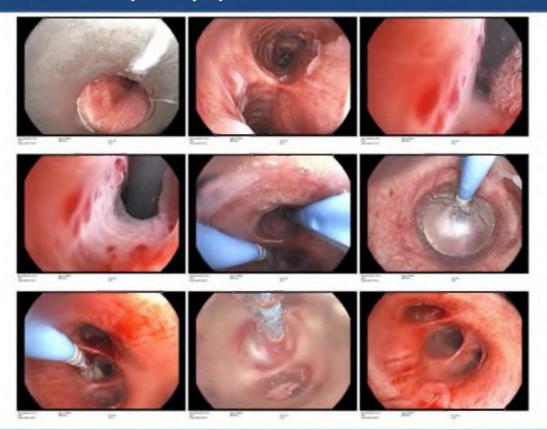
Treatment: cryodevitalization

Treatment: spray cryotherapy (scarring tracheal stenosis)

«деральные государственное бюджетное научное учреждение «Цантральный научно-исследовательский институт тубаркулаза»

Transbronchial cryobiopsy

- The fast cooling effect of the mini-probe affaches the surrounding tissue
- Large-volume tissue samples (~ 10 times larger vs classic technique)
- Absence of artefacts after sampling



Cryobiopsy allows to improve effectiveness of classic lung biopsy without invasive or costly tools (surgery, endosonography).

The specialists of the Endoscopy Department performed: first-ever lung cryobiopsy in Russia first-ever lung cryobiopsy in idiopathic pulmonary fibrosis (IPF) in Russia

Transbronchial cryobiopsy – what does it look like

Sivokozov I.V.

Endoscopic valve bronchial blockage

Indications for use:

In thoracic surgery

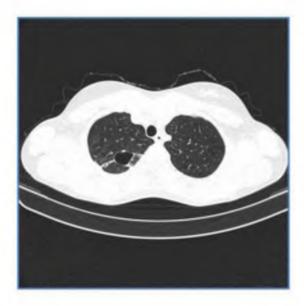
Pulmonary hemorrhage: grade 1-2 – for prevention of blood aspiration, tracheobronchial dyskinesia (TBD)

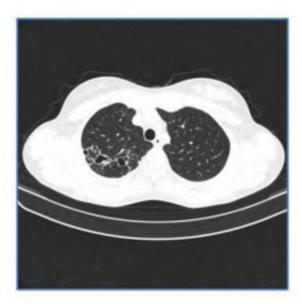
A spontaneous pneumothorax – for air leak cessation

Postresection empyema and residual cavities with a bronchopleural fistula – for air leak cessation

In TB treatment

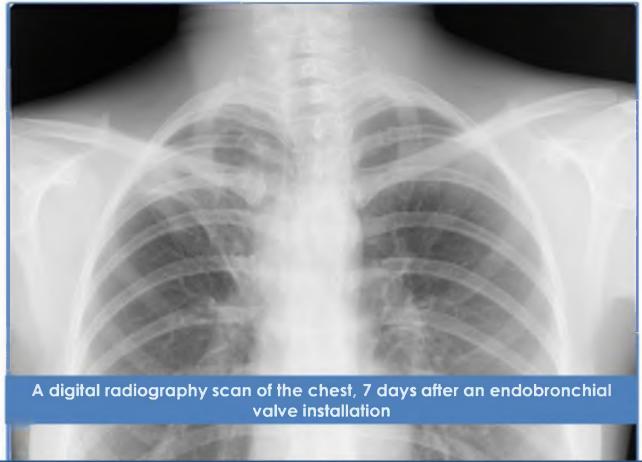
Fibrocavernous or cavernous pulmonary TB with MDR, XDR – for cavity closure


Effectiveness of valve bronchial blockage for cavity closure and sputum conversion in MDR/XDR patients is over 70%


(Lovacheva O.V., Shabalina I.Yu., 2012-2018)

Endoscopic valve bronchial blockage

A female patient aged 26 with established mycobacteriosis (M. kansasii), on treatment for 12 months, referred for surgery


Valve bronchial blockage

A valve installation in the mouth of the right upper lobe bronchus (local anesthesia, in the ambulatory setting)

Radiography dynamics

The dynamics by chest CT examinations, 3 months after an endobronchial valve installation

The training centre of Central TB Research Institute

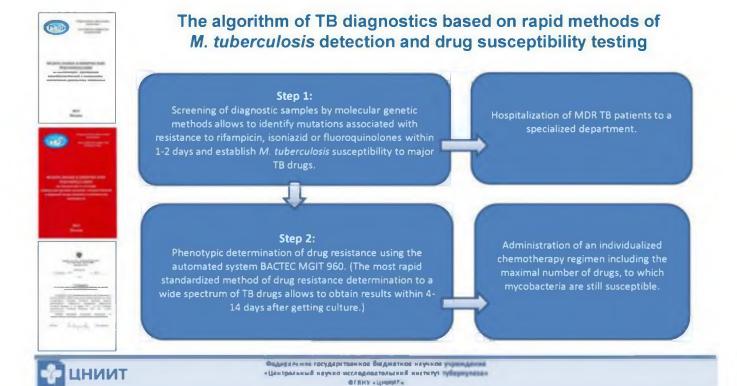
ФДена «Пеница» «Пенаваличну из Анто-иссое бозна из пенета да вод за Укина «Статория из Анто-иссое бозна из пенета да вод за Укина

Publications and guidelines

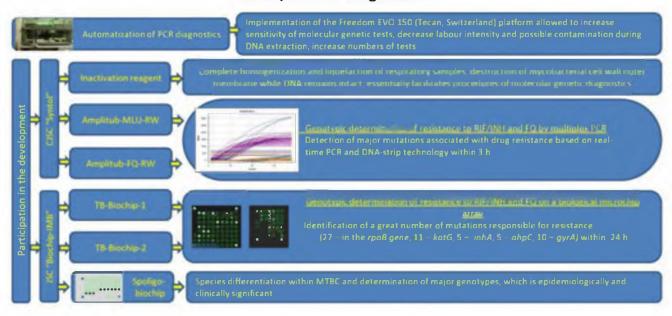
The personnel of the Endoscopy Department publish articles in high impact factor foreign and Russian journals every year.

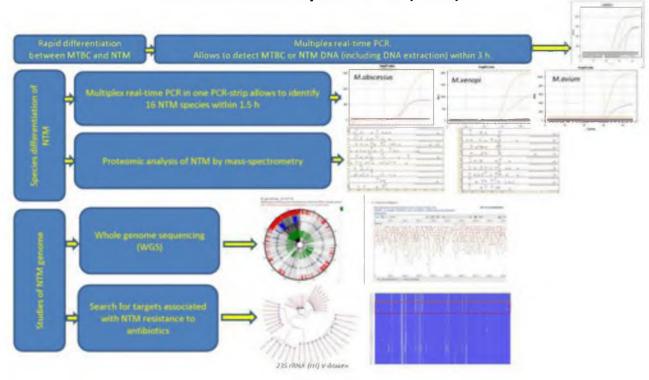
The first-ever guidelines on endosonography in Russia were developed.

Федерельное госуда рственное бюджетное научное учреждение «Центрельный неучно-исследоветельский институт тубернулеза » ФГБНУ «ЦНИИТ»


Conclusion

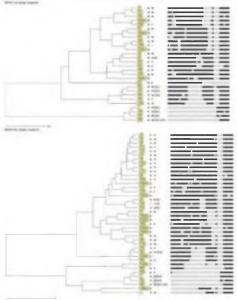
The present potentials of bronchoscopy allow to significantly improve effectiveness of low-invasive diagnostics of lung or mediastinum diseases in pulmonology and phthisiology.


The therapeutic potentials of bronchoscopy will be increasing in the nearest decade.


государственное биджетное учреждение
неучно-исследоветелься в институт тубернулева в
ФГБНУ «ЦНИИТ»

The input of Central TB Research Institute into the development of rapid methods of MDR/XDR TB diagnostics

The advancements of Central TB Research Institute in the studies of nontuberculous mycobacteria (NTM)



Molecular and epidemiological studies of M. tuberculosis

Major spoligotypes of M. tuberculosis in the Russian Federation

Group / Cluster		Spoligoprofile
Beijing		THE CONTRACTOR OF THE PARTY OF
		MATERIAL CONTRACTOR OF THE STATE OF THE STAT
		PROPERTY OF THE PROPERTY OF TH
	H1	401110000000000000000000000000000000000
Haarlem	ЕН	4414400 800400114100411400411 8111 8111
	Н4	
LAM	LAM1	** ****** \$40 040 14 044
	EMA.	
	LAM9	
	T1	****
T	T2	***************************************
	74	1001110111
	TS	Consideration of the state of t
U		44111

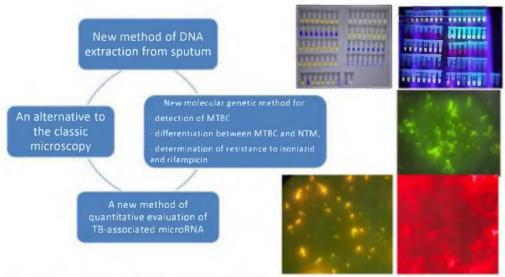
Genetic polymorphism of M. tuberculosis strains isolated from HIV-positive and HIV-negative TB patients

M. tuberculosis strains isolated from HIV-positive TB patients: - less diversity of genotypes;

- the Beijing genotype with MDR was reliably more prevalent

Horizon 2020: complex solutions for rapid and highly effective diagnostics of pulmonary TB, including detection, drug resistance determination and TB treatment monitoring

- 1. THE UNIVERSITY OF EDINBURGH (UEDIN), United Kingdom
- 2. DESTINA GENOMICA (DGSL), Spain
- 3. HERIOT-WATT UNIVERSITY (HWU), United Kingdom
- 4. UNIVERSITA DEGLI STUDI DI PADOVA (UNIPD), Italy
- 5. OPTOELETTRONICA ITALIA SRL (Optoi), Italy
- 6. GENETIC ANALYSIS STRATEGIES SL (GAS), Spain
- 7. CENTRAL TB RESEARCH INSTITUTE, Russian Federation
- 8. Indian Council of Medical Research (NIRT), India
- 9. SHANMUKHA INNOVATIONS PRIVATE LIMITED (SIPL) India


The project objectives

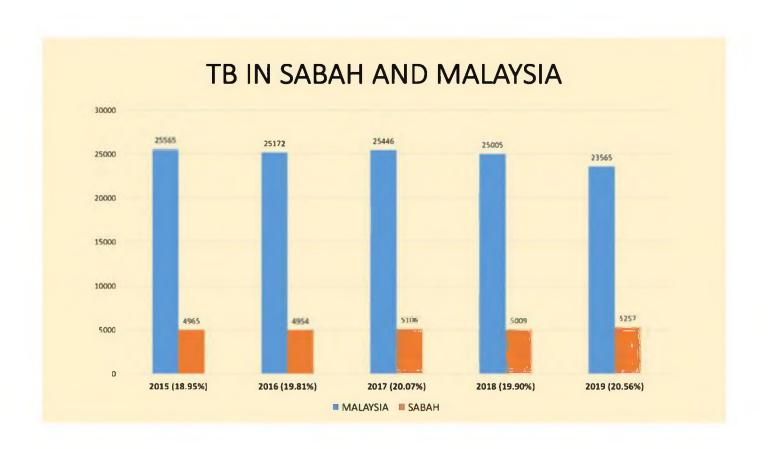
- 1. To develop methods of mycobacteria detection directly in sputum at primary medical care facilities using new, low-cost, portable optical devices and specific fluorescent staining of mycobacterial cell wall
- 2. To deliver rapid and accurate tests for *Mycobacterium tuberculosis* complex presence and rifampicin- and isoniazid-resistance determination
- 3. To diagnose TB and monitor treatment using microRNA as biomarkers

The research was carried out under financial support by the Ministry of Science and Higher Education of the Russian Federation in the framework of the Federal Targeted Program for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020, Agreement No. 05.586.21.0065 (Agreement Unique Identifier RFMEFI58619X0065).

Complex solutions for rapid and highly effective diagnostics of pulmonary TB, including detection, drug resistance determination and TB treatment monitoring

The research was carried out under financial support by the Ministry of Science and Higher Education of the Russian Federation in the framework of the Federal Targeted Pragram for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020, Agreement No. 05.586.21.0065 (Agreement Unique Identifier RFMEFI58619X0065)

- 1. The test allows to detect M. tuberculosis and mutations associated with resistance to rifampicin and isoniazid
- 2. The use of original probes allows to increase accuracy of identification of single-nucleotide polymorphisms versus standardized or hybridization methods
- 3. The test enables to obtain results quickly (about 2 h from sputum collection to obtaining results)
- 4. The test may be used by primary medical care facilities and does not require specimen delivery to centralized laboratories
- 5. The easy-to-use test does not require special skills
- 6. The test is low-cost versus conventional/modern detection methods



The research was carried out under financial support by the Ministry of Science and Higher Education of the Russian Federation in the framework of the Federal Targeted Program for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020, Agreement No. 05.586.21.0065 (Agreement Unique Identifier RFMEFI58619X0065).



GAP FOR TB DIAGNOSTIC SERVICES IN SABAH

- Only 31 government owned X-Ray facilities across the state
- Concentration of health care services in urban areas
- Health service coverage disparity; citizen vs non-citizen

HOW MUCH IS RM50 WORTH?

UNIVERSAL COVERAGE AND ACCESS

- Universal health coverage has been set as a possible umbrella goal for health in the post-2015 development agenda.
- Universal health coverage is the goal that all people obtain the health services they need without risking financial hardship from unaffordable out-of-pocket payments.
- Involves coverage with good health services from health promotion to prevention, treatment, rehabilitation and palliation – as well as coverage with a form of financial risk protection.

MOBILE XRAY STATISTICS 2016-2020

	2016	(%)	2017	(%)	2018	(%)	2019	(%)	Jan- Jul 2020	(%)	TOTAL	(%)
NUMBER OF CLIENT ENGAGEMENTS	10,626		12,033		13,961		13,373		4,770		54,763	
NUMBER OF XRAY DONE	10,560	99	10,422	87	11,738	84	11,163	83	4,251	89	48,134	87
ABNORMAL CXR	696	6.6	670	6.4	1,122	9.5	874	8.4	313	7.4	3,675	7.5
PTB POSITIVE	78	0.7	100	0.96	122	1.04	107	0.96	67	1.4	474	0.98
SMEAR POSITIVE (SPUTUM AFB)	36	46	54	54	70	57	70	65	47	77	277	48
SMEAR NEGATIVE (GENEXPERT, MTB C&S, RESPIRATORY SPECIALIST)	42	54	46	46	52	43	37	35	20	23	197	42

SUMMARY OF SERVICE (2016-2019)

- Mobile X-Ray Service reached out to an average of 11,000 population a year
- Abnormal X-Ray detection 7.7%
- Positive TB detection rate of 0.92%
- Detection of TB among Sputum Smear Negatives clients (44.11%) through other services provided: GeneXpert, C+S, Specialist consultation
- Cost to detect 1 abnormal x-ray RM36.72
- Cost to detect 1 Pulmonary TB RM479.30

OUTREACH PROGRAMME TO GIVE ACCESS TO RURAL COMMUNITY AND RURAL TB HOTSPOTS

YEAR	NUMBER OF HOTSPOTS	NUMBER SCREENED	POSITIVE CASES
2016	12	2576	24
2017	25	3525	44
2018	20	4242	53
2019	30	4050	50

87 14393 171

1.2%

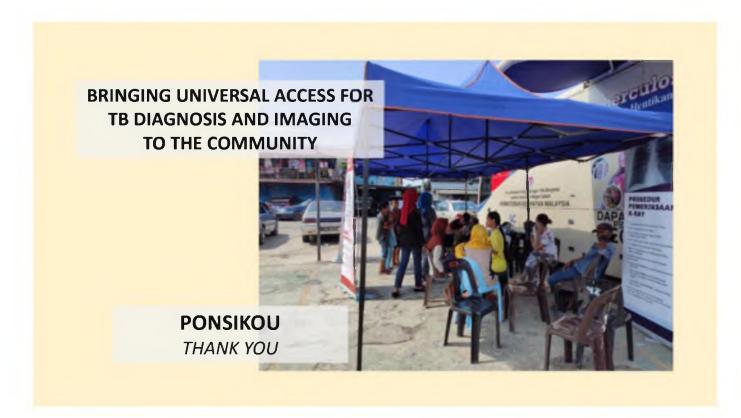
OUTREACH PROGRAMME TO GIVE ACCESS TO RURAL COMMUNITY AND RURAL TB HOTSPOTS

SERVICE PROVIDED FOR THE INCARCERATED COMMUNITY

YEAR	NUMBER OF HIGH RISK INSTITUTIONS	NUMBER SCREENED	POSITIVE CASES
2016	10	6878	50
2017	3	5289	56
2018	5	6215	68
2019	7	5225	56
	25	23607	230

1%

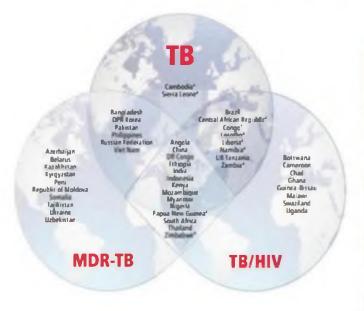
HIGH RISK INSTITUTIONS:
PRISON, OLD FOLKS HOME, IMMIGRATION DETENTION
CENTRES, DRUG REHABILITATION CENTRES



SERVICE PROVIDED FOR THE VULNERABLE COMMUNITY: OLD FOLKS' HOMES

DEPLOYMENT OF TB MOBILE
XRAY SERVICES TO SUPPLEMENT
COVID-19 XRAY STAGING IN
RURAL COMMUNITY AREAS TO
AID PANDEMIC CONTROL

Monitoring and Surveillance of MDR-XDR TB in the Russian Federation

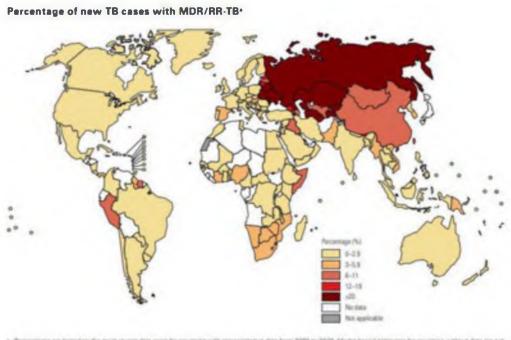

Dr. Vadim Testov

National Medical Research Center of Phthisiopulmonology and Infection Diseases, Ministry of Health of the Russian Federation

CONTEXT

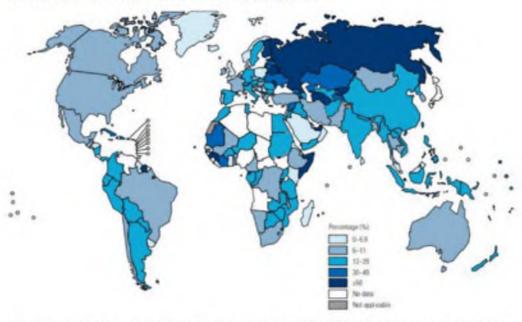
- Problem of MDR-TB in the World;
- Problem of MDR-TB in the Russian Federation;
- Monitoring and Surveillance of MDR/XDR-TB in the Russian Federation - main approaches;
- Main topics of MDR/XDR-TB management in the Russian Federation;
- Discussion and Conclusion

TB, MDR-TB and TB-HIV Burden Countries

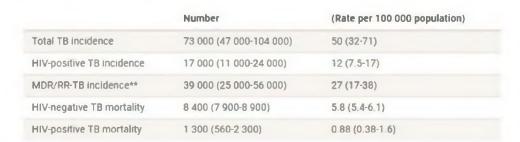


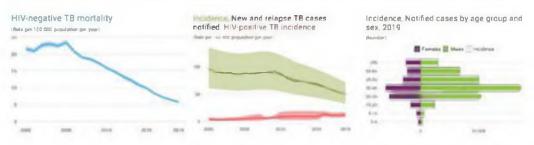
Incidence of MDR/RR-TB

WHO regions and globally	Number of MDR/RR-TB patients	Rates are per 100 000 population
Global	465000	6.1
Africa	77000	7.0
The Americas	11000	1.0
Eastern Mediterranean	36000	5.0
Europe	70000	7.5
South-East Asia	171000	8.6
Western Pacific	101000	5.2


WHO Global TB Report

Percentage of New TB cases with MDD/RR-TB


Percentage of Previously Treated TB cases with MDD/RR-TB



Percentages are based on the most recent data point for countries with representative tims from 2005 to 2020. Model-based estimates for countries without tims are not strong MCR-TB in a subset of RR-TB.

Russian Federation Country Profile: the Dynamics of Epidemiological Indicators

Case detection rate = 100%

MDR/RR-TB Main Challenges for the TB Control

% of TB cases with MDR-TB among all new TB cases in the Russian Federation (2019) – 33,1%

% of XDR TB among MDR-TB patients (new cases and relapses, 2019) – 12,7%

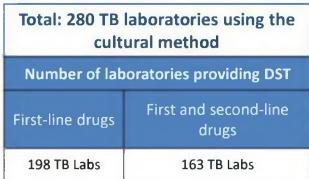
Ongoing TB Research Implementation of Molecular-genetic Methods for TB diagnostics and MDR-TB detection

Real time PCR Amplitub-RV, Russia Amplitub-MDR RV(H и R), Amplitub- XDR RV(Fg)

Method of hybridization on biochips
BIOCHIP-1 (Η и R)
BIOCHIP-2 (Fq) TB-TEST (Η, R, Fq, AG/CP, E)
Russia

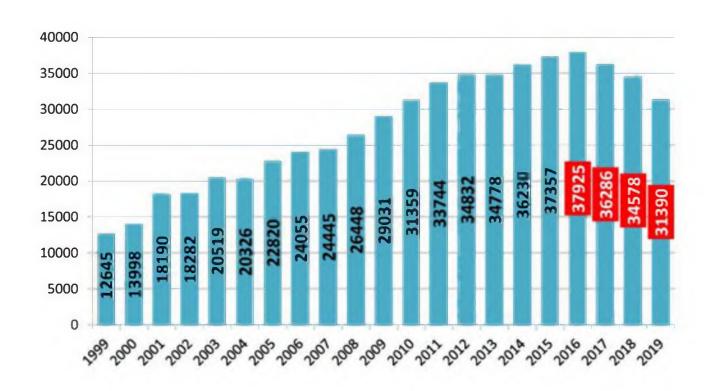
Method of hybridization with type-specific probes (LPA) Geno Type MTBDRPlus (H и R), MTBDRs (Fq, AG/CP)

«Cartridge» technology GeneXpert MTB/RIF



Number of laboratories using the genotypic method

Total: 297 TB laboratories						
Real time PCR	Xpert MTB/RIF	віоснір	LPA			
102 TB Labs	153 TB Labs	20 TB Labs				

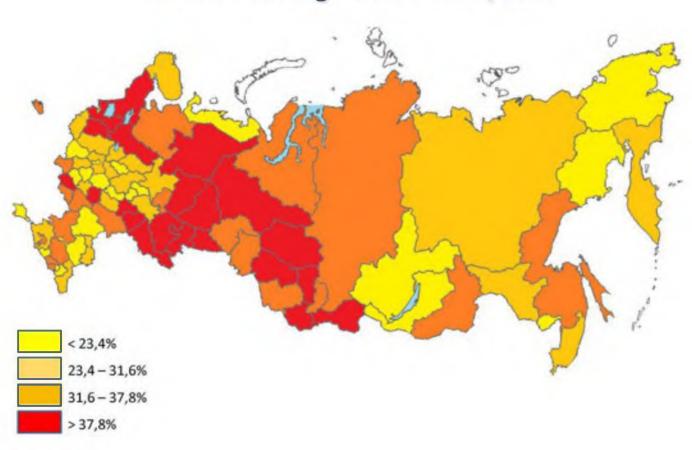


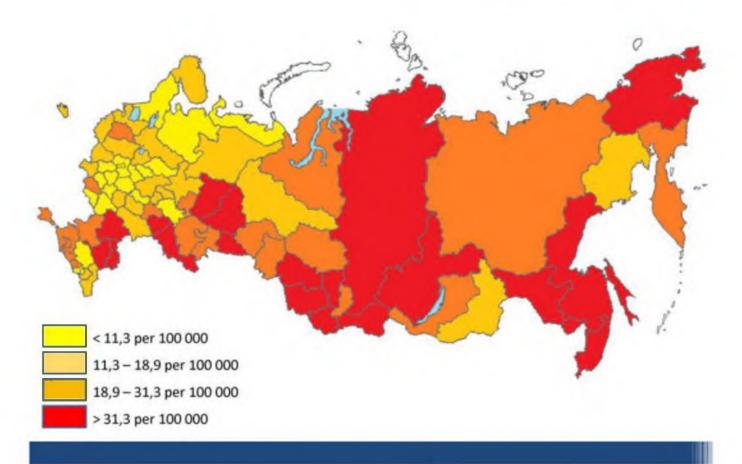
Number of laboratories using the cultural method

Absolute Number of MDR-TB patients in Russia

Federal (across the country, electronic) TB Registration System as a new modern tool for epidemiological research and statistical reviews

- Revised State System of TB Surveillance and Monitoring based on the TB Registration System;
- Automated tools for DR surveillance;
- Centralization of control and monitoring of TB treatment;
- Centralized TB case management, online consultations and recommendations;
- Supervision of TB prophylaxis;
- Automated tools for anti-TB Drug management


All National Systems of TB monitoring should be combined within the framework of the Federal (electronic) TB Registration Systems


Structure and Implementation of Federal (electronic) TB Register

- Federal Level:
- Main server and data processing center
- Federal Group of Technical Support
- Federal Group for Monitoring
- · Regional Level:
- Regional infrastructure for Federal (electronic) TB Register
- Regional Administrator of Register
- Level of Health Facility:
- Computer connected with Federal State information System in TB cabinet or TB department
- 2017 All Russian subjects started implementation of Federal (electronic) TB Register
- 2018 Reports on new TB cases and relapses notification, MDR/XDR-TB cases, TB/HIV cases, standard reports on: TB cases registration, Admitted TB treatment regimes
- 2019 Reports on new TB cases and relapses notification, MDR/XDR-TB cases, TB/HIV cases, standard reports on: TB cases registration, Admitted TB treatment regimes, Treatment outcomes including special report for TB/HIV cases. Lab Register and Automated tools for DR Surveillance; Automated tool for anti-TB Drug management

MDR-TB among new TB cases, 2019

Prevalence of MDR-TB in Russian Regions, 2019

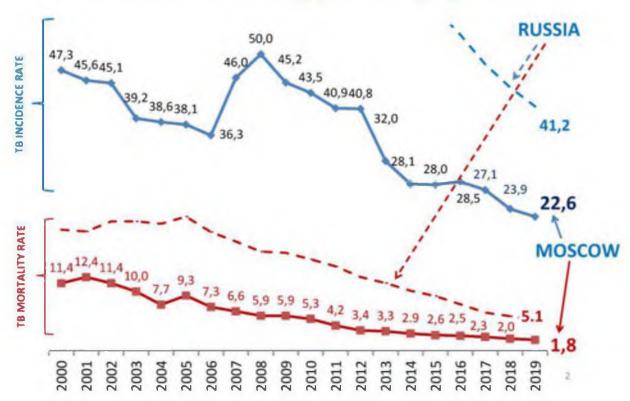
Principles of TB care in the Russian Federation

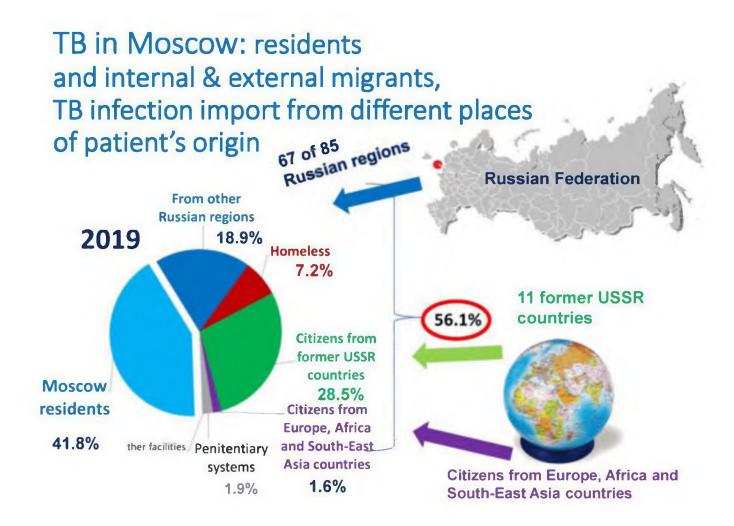
- TB care for Russian citizens is free of charge;
- Federal MoH provides drugs for MDR/XDR-TB treatment;
- Free access to TB care;
- State support and priority of financing for TB Control;
- Interdepartmental and intersectoral co-ordination;
- Active TB screening of population and effective passive TB detection;
- Prophylaxis of TB spread (TB vaccination BCG, TB Control in focus of infection, specialized activities in risk groups);
- Specialized TB service

Indicators of MDR/XDR-TB management

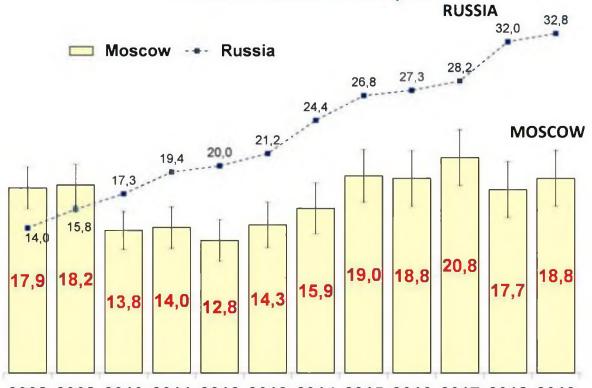
Indicator	World	WHO EURO Region	the Russian Federation	
Coverage by Rapid DST	31%	53%	73%	
Total coverage by DST				
-New TB cases -Retreatment cases	46% 83%	91% 93%	88% 95%	
Coverage by MDR/XDR-TB treatment	69%	84%	99%	
Treatment success rate	56%	57%	54%	
	Target indicator -75%			
Treatment success rate for XDR- TB cases	39%	39%	38%	

Conclusions

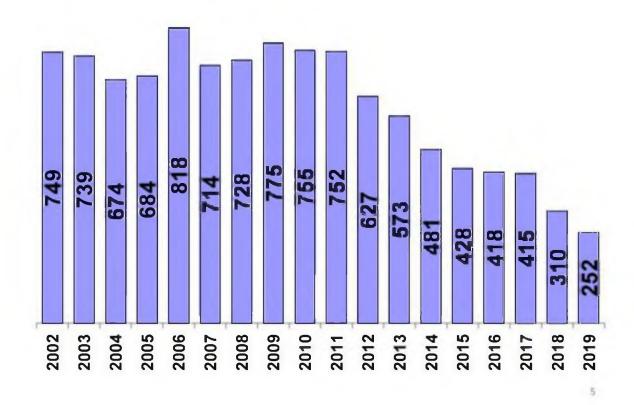

- The Russian Federation is MDR-TB high level country;
- Proportion of TB cases with MDR-TB among all new TB cases comprised 33,1 % in 2019;
- High level of XDR-TB: 11% out all new MDR/RR-TB cases and 25,9% out all MDR-TB retreatment cases;
- The Russian Federation has developed laboratory network for TB detection and DST preparation;
- All TB cases are examined by microscopy, Mbt DNA detection, culture, and DST;
- MDR-TB monitoring is provided by Federal electronic System Federal electronic TB Register;
- All MDR-TB patients receive MDR-TB treatment free of cost.

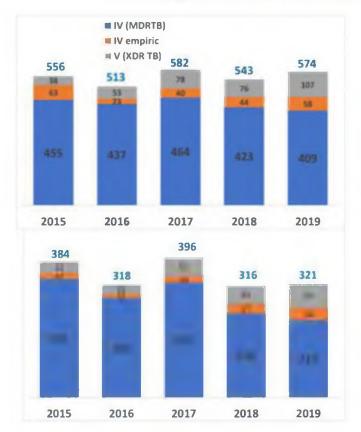

• Russia: M.D. Evgeny Belilovskiy "Study on the Spread of Tuberculosis with Drug Resistance of the Pathogen to Various Anti-Tuberculosis Drugs using Molecular Genetic Methods among the Permanent and Migratory Population of Moscow"

Study on the spread of TB with drug resistance of the pathogen to antiTB drugs in permanent and migratory population in Moscow, using phenotypic and molecular genetic methods


Evgeny Belilovskiy,
Head of TB surveillance department,
Moscow Research and Clinical Center for TB Control
Moscow Department of Health

TB mortality and TB incidence rates Moscow and Russia, per 100K population





MDR-TB patients in follow up register in Moscow, permanent residents

TB patients in cohorts of treatment as MDR/XDR TB patients, Moscow

All TB patients in Moscow

TB patients among Moscow residents

Moscow TB Control Center participates in in international multicenter clinical trials of new TB treatment regimens and new anti-TB drugs

- Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline containing regimens in the treatment of MDR- and XDR-TB: a multicenter study. Eur Respir J 2017; 49: 1700387
- Regimens in Moscow includes number of new anti-TB drugs: bedaquiline, linezolid, fluoroquinolones etc

Success of MDR/XDR TB treatment can be strong depend on - access to rapid molecular DST methods and their correct interpretation, - access to data about anti-TB drug resistance pattern in population, because not less than half on TB patients (in Moscow) have not DST information due to bacteriological negative test results, but part of them had contacts with MDR/XDR TB patients.

Drug resistance survey in Moscow

- Two main subjects of Moscow DRS on the current stage
 - To study the relationship between phenotypic *M*. tuberculosis drug resistance (PhDR) and mutations of genes of MTB (as markers of the PhDR), which is an essential for the prompt selection of the treatment regimen
 - To study the anti-TB drug resistance pattern in different strata of Moscow population, based on representative samples of TB patients

Drug resistance survey in Moscow

Primary requirements

- Phenotypic and genotyping laboratory methods of DST approved by WHO and/or authorized and approved in Russia
- Epidemiological and laboratory registers data integration
- Representative samples include all or most of registered new TB cases and selected re-treatment cases
- Date of sampling before date of the first dose of treatment course (important for new TB cases and TB relapses)
- Decomposition on residents, internal migrants (Russian regions), external migrants (Central Asia countries, Europe countries, others)

Type of studies

- Objective 1: Retrospective studies using local Moscow biobank of TB strains
- Objective 2: Prospective or cross-sectional study

Laboratory Methods

- <u>BactecTM MGITTM 960</u> (Becton Dickinson, USA) using Middlebrook
 7H9 liquid nutrient medium. DST was performed using critical
 concentrations recommended by WHO in 2008
- <u>"TB-BIOCHIP" (BIOCHIP-IMB LLC, Russia)</u>, which allows detection of
 M. tuberculosis complex DNA and determination of 27 mutations in the
 rpoB gene (resistance to RIF), 9 mutations in the *katG* gene, 5 in the
 inhA gene and 5 in the intergene region *ahpC l oxyR* (resistance to INH).
- <u>"TB-BIOCHIP-2" (BIOCHIP-IMB LLC. Russia)</u>, which allows the detection of *M. tuberculosis complex* DNA and the determination of 9 types of mutations in the *gyrA* gene (resistance to fluoroquinolones).
- "GenoType MTBDRsl" (HainLifescience, Germany), which allows the
 detection of M. tuberculosis complex DNA and determine drug sensitivity
 to fluoroquinolones by analyzing 6 mutations in the gyrA gene, as well
 as aminoglycosides and CPM by two mutations in the rrs gene.

Data sources: long-term TB surveillance system in Moscow, which integrates with DST data of TB biobank

- Source of data for TB surveillance register TB registered and followed up forms, approved by Ministry of Health and Moscow TB Control Center
- TB surveillance database has more 90000 records since 1998, including more than 20000 records for non residents since 2009. Besides TB patients deaths' cases register (TB death both from TB and from other causes, including HIV) operates from 2001 (~10000 cases)
- TB surveillance database includes social-demographics data, diagnostics information, TB treatment history, TB patients follow up, TB treatment outcomes
- Local TB biobank of TB strains, 2014-2019 data

Objective 1: Relationship between phenotypic *M*. tuberculosis drug resistance and mutations of genes of MTB associated with drug resistance

Genotypic and phenotypic drug resistance of M.tuberculosis in patients registered in Moscow, Russia M. Krasnova, E. Belilovsky, A. Khakhalina, S. Borisov, S. Safonova, E. Nosova ERS International Congress 2018

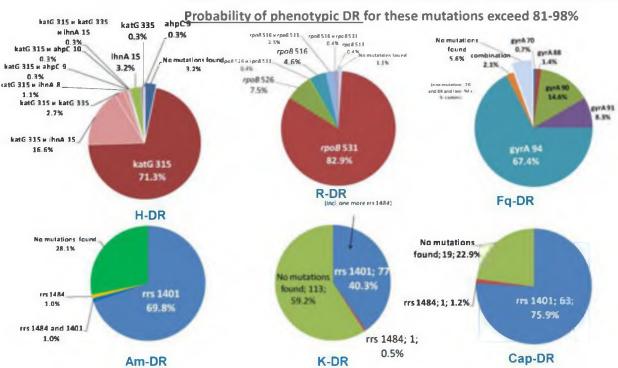
Gene mutation and drug resistance of M. tuberculosis in the patients followed up in the city of Mascow Krasnova M.A., Belilovsky E.M., Borisov S.E., Khakhalina A.A., Mikhaylova Y.D., Nosova E.Y. Tuberculosis and Lung Diseases. 2019;97(12):34-44. (In Russ.) https://doi.org/10.21292/2075-1230-2019-97-12-34-4

Retrospective study based on TB surveillance register and local TB strains biobank data, to define:

- (1) shares of different mutations among DR patients depend on social and demographic characteristics,
- (2) probability of DR depend on different mutations,
- (3) the prevalence of these mutations among different groups of patients

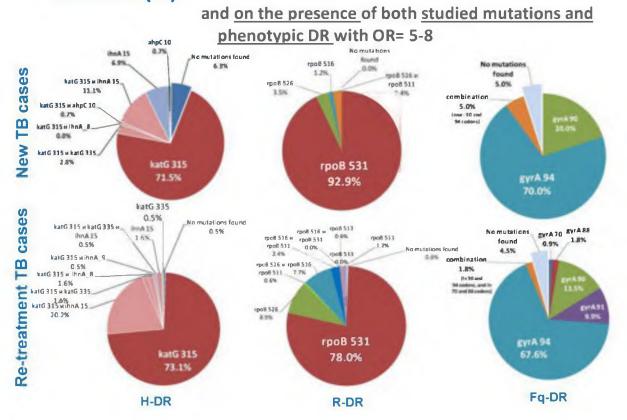
Methods

- Molecular and phenotypic tests of 685 strains collected in 2014 from 685 adult new and re-treatment TB patients, registered in all 12 Moscow administrative units (~1 mln. of population for each), were considered. The sample was representative enough.
- Analysis included data about mutations in 315, 335 codons of katG gene and in ihnA 15 for isoniazid (H), in 531, 526, 516 and 511 codons of rpoB gene for rifampicin (R), in 90, 91 and 94 codons of gyrA for fluoroguinolones (Fg), mutations in rrs gene for amikacin (Am), kanamicin (K) and capreomycin (Cap)


The most frequently mutation among DR patients:

in H-DR pts was in 315 codon of katG - 92.5% (95%CI: 89.2-94.9). Results (1)

in R-DR pts was in 531 codon of rpoB - 83.2% (78.3-87.4),


in Fq-DR pts was in 94 codon of gyrA - 68.8% (60.5-76.2)

in Am-, K- and Cap-DR was in 1401 codon of rrs - 70.8%, 40.3% and 75.9%

<u>Previous treatment</u> had a most significant effect <u>on the</u>
<u>variety of mutations</u> determining phenotypic DR to H, R,
Fq and Amg/Cap,

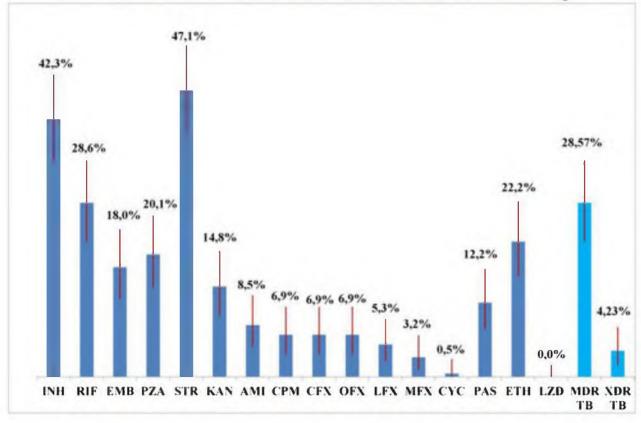
Results (2)

Conclusions from first (retrospective) stage of DRS

- Rapid molecular tests can fully replace phenotypic tests in routine practice. Probability of phenotypic drug resistance for DR marker mutations exceed 81-98%.
- Previous treatment had a most significant effect on the variety of mutations determining PhDR to H, R, Fq and Amg/Cap, and on the prevalence of both studied mutations and PhDR.

Objective 2: Prospective DRS in Moscow population

- The study of the relationship between socio-demographic factors and DR of new TB cases in metropolis with a significant proportion of non-permanent population will contribute to an adequate choice of treatment regimens
- Sub-objectives:
- (1) To characterize DR in new TB cases in Moscow.
- (2) To assess the relationship of socio-demographic factors and DR in new TB cases.

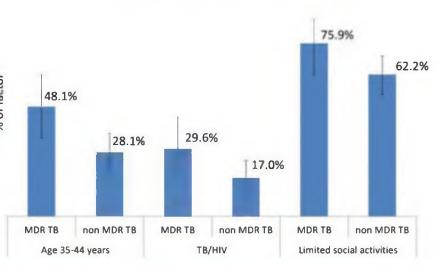

Socio-demographic factors and drug resistance of M. tuberculosis in patients registered in megapolis
A. Chizhova, S. Safonova, Y. Mikhajlova, M. Krasnova, A. Khakhalina, I. Peretokina, E. Belilovsky,
ERS International Congress, Madrid, 2019 (on English)
Tuberculosis and social diseases, 2019, N 3, p. 4-13 (on Russian)

Methods

- DST and molecular tests to first- and second- line drugs for 189 strains of M.
 tuberculosis isolated from all 189 new TB cases who were registered in 6 months of 2017 in 5 of the 12 districts of Moscow.
- DST for isoniazid (INH), rifampicin (RIF), streptomycin (STR), ethambutol (EMB), pyrazinamide (PZA), kanamycin (KAN), amikacin (AMI), ofloxacin (OFX), moxifloxacin (MXF), capreomycin (CPM), levofloxacin (LFX), cycloserine (CYC), PASK (PAS), ethionamide (ETH), ciprofloxacin (CFX), linezolid (LZD).
- TB detection, TB diagnosis and socio-demographic characteristics of patients were taken from the TB surveillance register. A group of people with "limited social activity" (unengaged) included unemployed people of working age, retired and disabled people.
 - 189 patients included in the study: 125 (66.1%) permanent residents of Moscow, 35 (18.5%) arrived from other regions of the Russian Federation, 5 (2.6%) homeless, 22 (11.6%) citizens of the countries of the former USSR and 2 (1.1%) citizens of other countries.
 - They also included: 68.8% men, 51.9% unemployed, 31.2% patients had a
 permanent job, 10.6% retired, 3.7% disabled and 2.6% (5 people) students of
 secondary and higher educational institutions. 20.6% (39 people) were TB/HIV
 patients. The median age was 40 years with an IQR= 32.0-51.0.

Resistance of *M. tuberculosis* to different anti-TB drugs

The relationship of socio-demographic factors with phenotypic resistance to anti-TB drugs, <u>OR</u>


Anti-TB	Age groups, OR (95%CI)						
drugs	18-27	28-37	35-44				
RIF	0,0919 (0,012-0,70)	p > 0,1	2,37 (1,23-4,55)				
EMB		2,20 (1,02-4,72)	p > 0,1				
PZA		p > 0,1	p > 0,1				
ETH		2,46 (1,20-5,01)	p > 0,1				
MDR-TB	0,09 (0,01-0,70)	p > 0,1	2,3703 (1,23-4,55)				
XDR-TB		4,25 (0,98-18,43)	p > 0,1				

Anti-TB	residents/ migrants	working/ unemployed	Limited social activity
drugs	OR (95%CI)	OF	R (90%CI)
RIF	p > 0,1	0,54 (0,26- 1,13	3) 1,91 (1,05-3,49)
PZA	p > 0,1	0,45 (0,19- 1,08	8) 2,21 (1,09-4,50)
STR	0,52 (0,27 -0,97)	p > 0,1	p > 0,1
MDR-TB	p > 0,1	0,54 (0,23-1,13	3) 1,91 (1,05-3,49)

Associa tion	LFX	OFX	CFX	RIF	PZA	MXF	ЕТН	MDR- TB	XDR- TB
with	OR (95%CI)			OR (90%CI)					
TB/HIV	4,27	3,71	3,71	2,05	2,12	4,08	2,09	2,05	4,17
	(1,17 -	(1,17 -	(1,17 -	(1,11-	(1,08-	(1,03-	(1,09-	(1,11-	(1,25-
	15,57)	11,78)	11,78)	3,80)	4,15)	16,19)	4,01)	3,80)	13,90)

Factors, associated with MDR-TB

The results of monovariable and multivariate analysis factors, associated with of MDR-TB

FACTORS

	1 / 0 / 0 // 0					
Factors	n	DR-TB % (factor)	Nor	MDR-TB % (factor)	Monovariable analysis, 95%Cl (*90%Cl)	Multivariable analysis (95%CI)
Age 35-44 years	26	48,15%	38	28,15%	2,370 (1,234-4,551)	<mark>2,131</mark> (1,079-4,209)
TB/HIV	16	29,63%	23	17,04%	2,050 (0,982-4,283); (1,105 -3,804)*	1,446 (0,669-3,212)
Limited social activity	41	75,93%	84	62,22%	1,915 (0,937-3,912); (1,051-3,487)*	<mark>1,741</mark> (0,833-3,640)

Socio-demographic factors and mutations responsible to phenotypic resistance

- Largest share of mutations in the *rpoB* gene was detected in the **age group 35-44 years** 47.4% (95% CI: 34.0-61,0%, *p* = 0.0099), while in the **age group of 18-27 years** this mutation is significantly less common than in other ages 1.8% (95% CI: 0.04-9.4%, *p* = 0.00167) or one case
- Limited social activity is associated with the presence of mutations in the rpoB gene (p = 0.0758). Patients with limited social activity were 75.4% (95% CI: 62.2-85.9%) among those with a mutation in the rpoB gene. And in the group without mutations in the rpoB gene, patients with limited social activity were 62.12 % (95% CI: 53.3-70.4%)
- The share of patients from other regions of the Russian Federation with mutations in the *katG* gene equal to 26.4% (95% CI: 16.7-38.1%) was significantly lower (p = 0.0412) compared with the resident population and citizens of the countries of the former USSR 73.6% (95% CI: 61.9-83.3%)

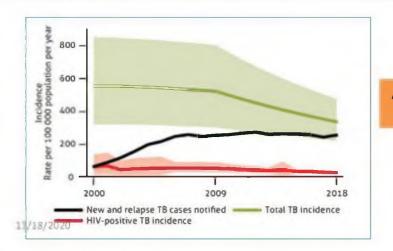
Conclusions

- The obtained DRS results reflect the TB drug resistance pattern, common in various segments of the population of the city with a high pressure of internal and external migration.
- The study results can be used to ensure the rational use of first- and second-line anti-TB drugs for TB treatment, to develop evidence-based algorithms for choosing empirical treatment regimens
- Rapid molecular tests can fully replace phenotypic tests in routine practice with a high reliability
- Epidemiological and laboratory registers data integration is a key factor of DRS success
- Regional DRS should be carried out on a regular basis

• THANK YOU!

International Conference of Experts from the Russia Federation and the ASEAN member states

National response to TB management & control in Myanmar


Dr. Nang Saung Kham Assistant Director (TB/Leprosy) Eastern Shan State, MOHS, Myanmar 16th-17th .11.2020

TB Burden and Trend – in Myanmar (2018)

Source: Global TB Report 2019

2018	Number (K)	Rate (/100K)	Ranking among WHO SEARO countries
TB Incidence	181 (119-256)	338 (222-477)	3rd
TB/ HIV + Incidence	15 (10-22)	29 (19-41)	1st
MDR (RR) TB incidence	11 (7.4-16)	21 (14-30)	1st
HIV (-) Mortality	21 (12-31)	39 (23-58)	3rd
HIV (+) Mortality	3.7 (2.5-5.2)	6.9 (4.6-9.7)	

Annual Decline of Incidence: 4.9% Case Notification Gap: 24%

Vision, Goal and Objectives on Ending TB in Myanmar

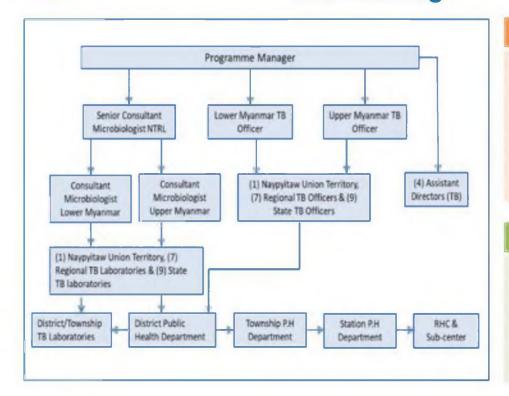
Vision: Myanmar free of TB

Zero deaths, disease and suffering due to TB by 2050

Goal: End TB epidemic in Myanmar Fewer than 10 cases per 100,000 population by 2035

Objective 1: accelerate the decline in the prevalence of drug-sensitive and

drug-resistant TB


Objective 2: fully integrate TB prevention and care in Universal Health Coverage

Objective 3: enhance the prevention of TB, particularly for highrisk populations

11/18/2020

National TB Programme structure and staffing

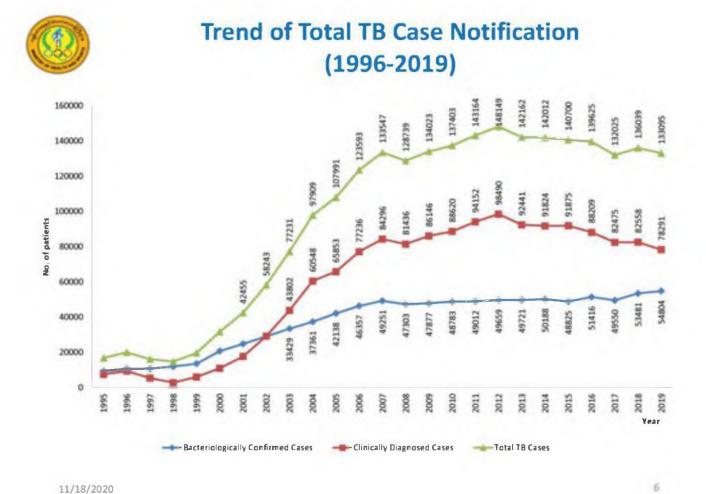
Strength

- · Well structured
- Supported by seconded staffs
- Committed staffs at all levels
- New PHS II appointments

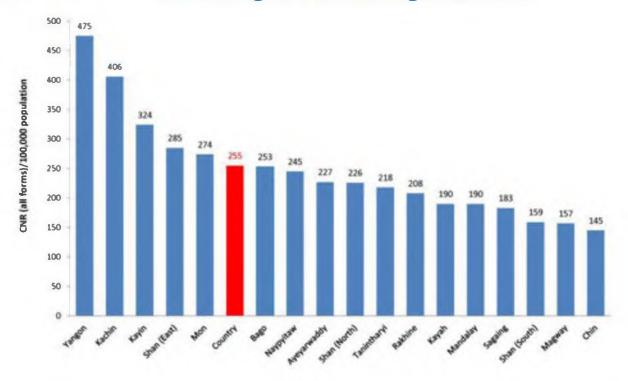
Challenges

- HR limitation (Only 30% of posts are filled)
- Depend on seconded staffs in some areas
- High staff turnover

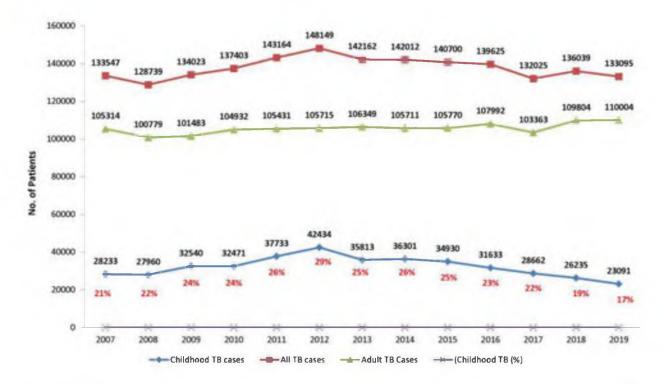
11/18/2020 4


173 / 245

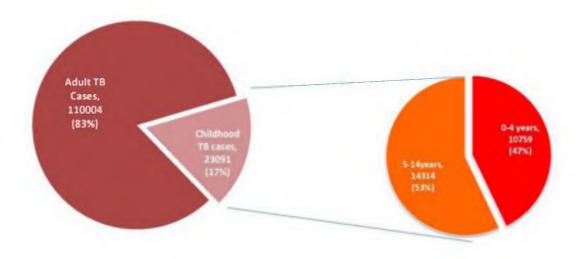
Multisectoral Accountability


- TB is a **priority disease** of the country
- Government funding contribution increased for TB care & control
- Policy statement on Mandatory TB Case Notification by MoHS (24th Sep 18)
- Consultation workshop on Multi-Sectorial Action to End TB was conducted with related Ministries, Donors, UN, WHO, EHO & Implementing Partners
- Better engagement & collaboration with civil society for TB case finding, case holding
 & health education
- Engagement with MMA & Myanmar Private Hospitals Associations for mandatory TB case notification

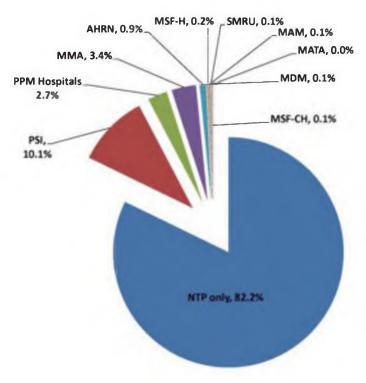
11/18/2020


Case Notification Rate(CNR) (all forms) according to States/Regions, 2019

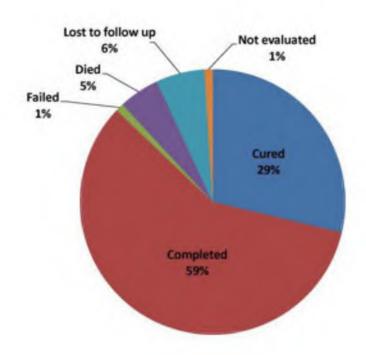
11/18/2020


Trend of Childhood TB cases (2007-2019)

11/18/2020 8

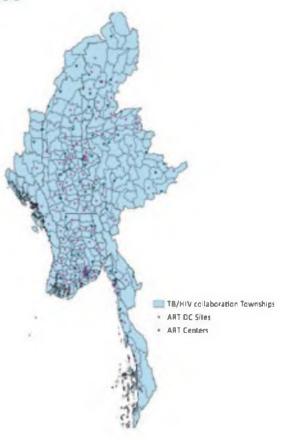

Proportion of Childhood TB cases, 2019

11/18/2020


Proportion of Total TB cases contributed by NTP & Other Partner units in 2019 (n=133095)

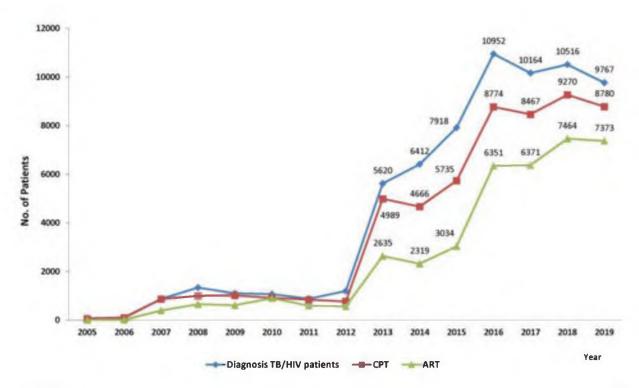
11/18/2020 10

Treatment Success Rate(TSR) (all forms), 2018 Cohort (88%)

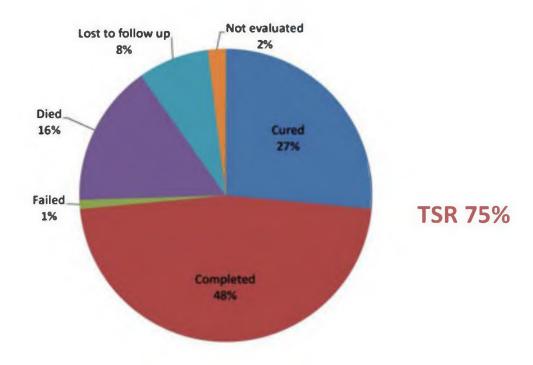


11/18/2020

TB/HIV collaborative townships and ART centers/ DC sites


- Initiated in 7 townships since 2005
- Gradually expanded to 28 townships by 2013
- Scaled up to 108 townships in 2014;
 covering a total of 136 townships in 2014
- Scaled up to 100 townships in 2015; covering a total of 236 townships
- Scaled up to 94 townships in 2016; covering all 330 townships in 2016.

11/18/2020


Trend of TB/HIV Collaborative Activities

11/18/2020 13

Treatment outcomes of TB/HIV cases registered in 2018 cohort

11/18/2020

Coverage of TB Diagnostic Services in Healthcare Facilities

- Microscopy and X-ray: all townships & some stations levels
- Microscopy, X-ray & GeneXpert: all States/Regions, District levels and some high burden townships
- 526 sputum smear microscopy centers (with 158 iLED Fluorescent MS) under EQA system
- 108 machines with GeneXpert MTB/RIF upto now
- 3 Culture/DST Centers (Yangon, Mandalay & Taunggyi)
- 2 Reference Laboratories for 2nd line LPA (Yangon & Mandalay)

15

11/18/2020

Programmatic Management of Drug-resistant TB (PMDT)

Status of uptake of 2019 WHO consolidated guidelines on DR-TB treatment

- Bedaquiline registration is under process with FDA
- Ordered treatment courses: 358 for IFFO; 359 for pre-XDR & XDR; 12 for pediatric; 561 to replace Am intolerance; 107 for patients requiring treatment extension beyond 6 months
- Transition plan to new treatment regimen is under process
- Some Operational Research on shorter treatment regimen is still in process

Best practices

Follow updated WHO's guidelines & recommendations according to local context under National Expert DR-TB committee's Guidance

Challenges in PMDT

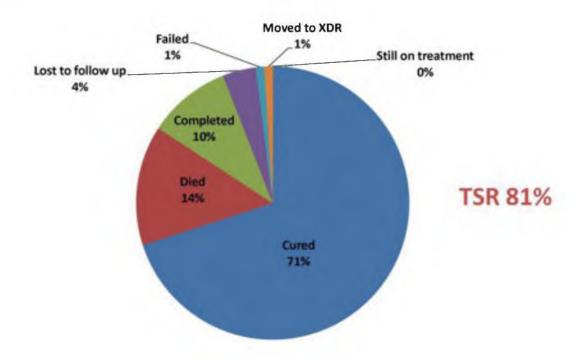
HR limitation

Gap between notified & enrolled MDR-TB pts


Lab capacity & extra infrastructure/maintenance

11/18/2020 16

179 / 245



Comparison of Notified MDR/RR-TB cases and Treatment initiation 2011 - 2019

Treatment outcomes 2017 PMDT cohort n=2621, TSR=81%

TB Preventive Treatment (TPT)

Target populations

- PLHIV & child contacts of TB patients (< 5 years)
- All childhood & household contacts (<35 years)
 considered to be expanded in next NSP

TPT Regimen

- 6H is currently in use
- Plan to do operational research on 3HP and 3RH (scale up of these shorter regimens depending on pilot results)
- Plan to develop national guideline for LTBI

- Usage of CXR before TPT is under consideration
- Consultation meeting for LTBI with NAP,
 physicians & paediatricians (27th Sept 2019)
- Central level workshop for LTBI (18th Oct 2019)
- TPT among PLHIV: 17.5% (6531/37402) in 2017,
 15.5% (5776/37277) in 2018 & 23.6%
 (4209/17835) in 2019 up to June
- TPT among Under 5 years old: 337 in 2017, 534
 in 2018 and 1218 in 2019.

11/18/2020 19

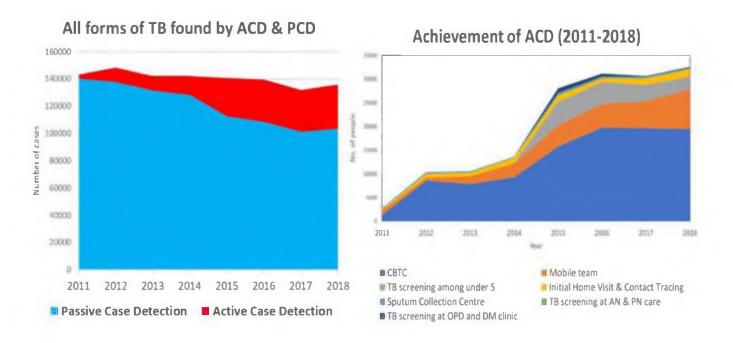
Intensified case-finding and systematic screening

Overall Strategy

• To strengthen missing TB cases especially in high-risk groups such as migrants, elderly, prisoners, patients with other co-morbidity, etc.

Key Interventions

- · Community based TB care
 - General community, Volunteers from NGOs)
- Mobile Team activities
 - Hard to reach area, mobile teams from NTP & NGOs
 - Prison/worksites, mobile teams from NTP
 - Industrial areas and camps, mobile teams from NTP
- TB/HIV
 - NTP & NAP


11/18/2020

- TB/DM
 - NTP & clinic staffs
- TB screening among AN/PN mothers
 - MCH staffs
- TB screening among under 5
 - MCH staffs
- Mandatory notification of TB
 - Non PPM Partners

20

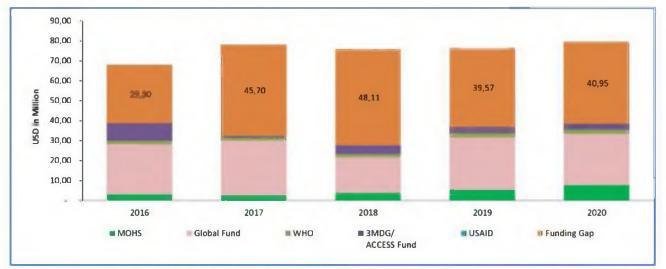
Key Achievements in finding the missing cases

11/18/2020 21

Community and civil society engagement

Community-based service delivery

- Among 330 townships, 245 are covered by Community Based TB Care
- Activities carried out by Community volunteers from 11 INGOs, 6 local NGOs and 3 EHOs.
- Malaria volunteers from some NGOs also perform Community Based Activities
- Main activities:
 - · Health education & community mobilization
 - Symptoms screening & referral of presumptive TB cases
 - Household contact tracing
 - · Treatment support & sputum transportation


Universal health coverage & social protection schemes

- For All Patients -
 - BGC vaccination
 - TB diagnosis
 - TB care & treatment (Free of charge)
- For DR-TB patients -
 - Monthly incentives,
 - Nutritional support &
 - TA

11/18/2020 23

TB Programme Financing

Opportunities

- · Government Funding increased
- New Global Fund concept note is in progress
- · Other funding sources

Challenges

- Funding sustainability beyond 2020
- Rely on international funding

National TB monitoring, evaluation & surveillance system

- Dissemination of Prevalence survey results in 2019
- Joint Monitoring Mission in 2019
- 4th National drug resistant survey in 2020
- Plan to conduct patient cost survey in next NSP period
- DS-TB Case-Based Recording & Reporting was piloted in Mon State in 2019
- Plan to expand DS-TB Case-Based Recording & Reporting to all townships in next NSP period

Challenges

- · Transition from paper based to electronic based reporting
- · Limited number & capacity of HR

11/18/2020 25

National strategy for TB research

- A National TB Research Strategy exists under Strategic Direction 3 of current NSP
- In 2017, National Operational/Implementation research agenda was developed with 8 thematic areas
- International support was the main funding source
- MoHS have started to finance for selected research
- NTP collaborate with Department of Medical Research, WHO & The Union (SORT-IT)
- Among 38 research topics, 22 have been completed

Strength

 Many NTP staffs have been trained under national & international researchers

Challenge

 Staffs are already overloaded with other activities & require additional time to conduct operational research

National Strategic Plan for TB (NSP) 2021-2025

Timeframe

- Draft NSP& Revision (Oct19)
- Stakeholder review of NSP draft (Nov19)
- Operational Plan (Nov19)
- M&E Plan (Nov19)
- Finalization & Costing workshop (Dec19)

Stakeholders

- Departments of MoHS
- Ministry of Home Affair (Prison Health)
- Social Security Board
- Defence Services Medical Academy
- UN & WHO
- · LNGOs, INGOs, CSO and CBO
- Donor agencies

Monitor NSP by annual targets according to M&E Plan

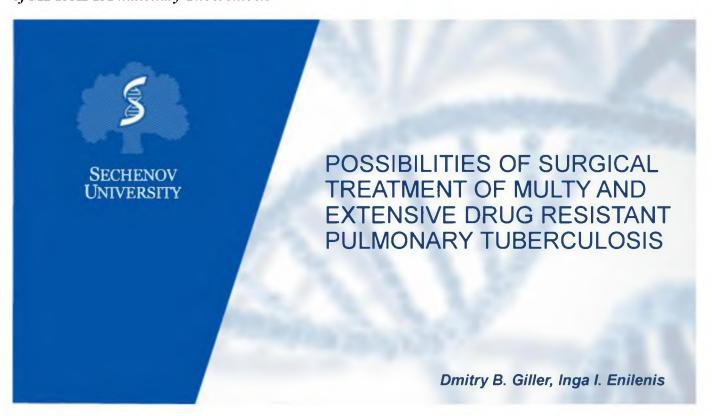
11/18/2020 2

Overview of progress, challenges & urgent actions needed to achieve high-level End TB commitments and targets

including 40 million people on treatment & 30 million people on preventive treatment by 2022

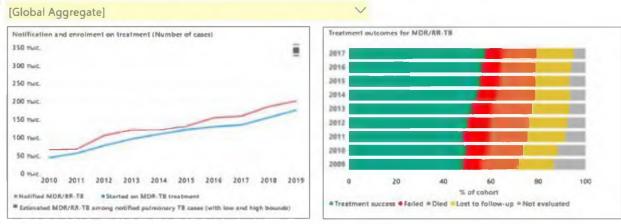
Strengths

- Government commitment: Increase funding support
- Mandatory Case Notification: Detect under reported cases
- Accelerated Case Finding Activities: Detect missing cases


Challenges

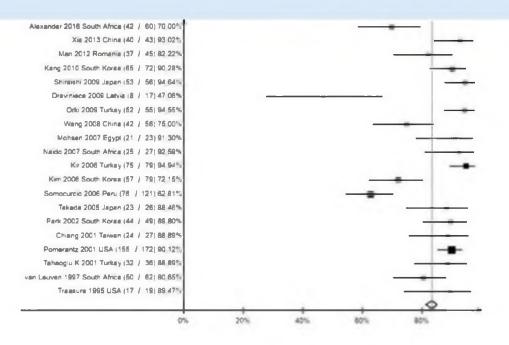
- Human Resource Limitation
- Universal DST (Sputum transportation)
- Funding sustainability beyond 2020

Key Actions for 2020


- Decentralization of diagnosis service to Station
 Hospitals
- Expand X-ray facilities in collaboration with
 Department of Medical Services
- Introduction of new diagnostic tools:
 GeneXpert Ultra, TB LAMP after pilot period
- High level advocacy meeting for TPT, New TPT regimen

Russia: M.D, PhD, Prof. Dmitrii Giller and M.D, PhD. Inga Enilenis "Possibilities of Surgical Treatment of MDR/XDR Pulmonary Tuberculosis"

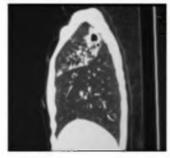
Diagnosis, notification and treatment of rifampicin-resistant TB (MDR/RR-TB)

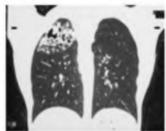


Generated: 15 November 2020

Sourse: www.who.int/tb/data

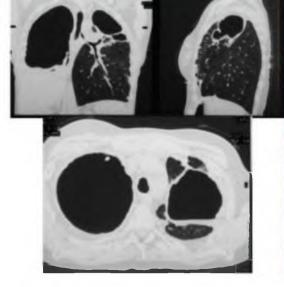
Favorable Outcome Rate (surgical treatment of MDR TB)

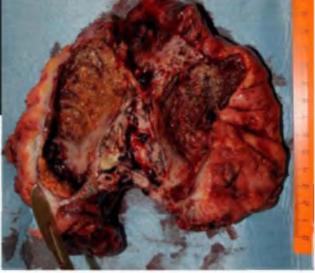

Patient data



	MDR TB	XDR TB	Total
	(n = 469)	(n = 273)	(n = 742)
Male (n = 489)	309 (65 9)	180 (66.0)	489 (65.9)
Age 39 and younger (n = 521)	334 (71.2)	187 (68.5)	521 (70.2)
Fibro - cavitary pulmonary tuberculosis (n = 500)	273 (58.3)	227 (83.3)	500 (67.4)
Cavernous tuberculosis (n = 56)	46 (9.8)	10 (3.6)	56 (7.5)
Caseous pneumonia (n = 19)	14 (3.1)	5 (1.8)	19 (2.6)
Tuberculoma (n = 146)	122 (26.0)	24 (8 8)	146 (19.7)
Tuberculous empyema as an isolated clinical form of TB (n = 12) as a complication (n = 131)	8 (1.6) 71 (15.1)	4 (1.5) 61 (22.2)	12 (1.6) 131 (1.7)
Cirrhotic pulmonary tuberculosis (n = 5)	5 (1.0)	0 (0)	5 (0.7)
Cancer + Tuberculosis (n = 4)	1 (0.2)	3 (1.0)	4 (0.5)
Sputum AFB positive (n = 659)	399 (85.1)	260 (95.5)	659 (88.8)
Complications of pulmonary tuberculosis (n = 670)	410 (87.5)	260 (95.5)	670 (90.3)
Duration of preoperative chemotherapy from 1 to 3 years (n = 530)	297 (63.4)	233 (85.5)	530 (71.4)

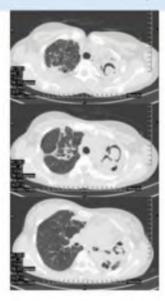
Cachexia 244 patients (32.9%) [XDR 39.9%, MDR 28.8%]

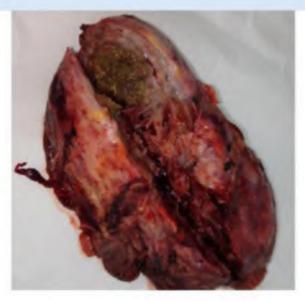




Empyema as a complication 131 patients (17.7%) [XDR 22.2%, MDR15.1%]

Lung bleeding 64 patients (8,6%) [XDR 6.3%, MDR 10.0%]





Aspergillosis 8 patients (1.1%) [XDR 1.0%, MDR 1.2%]

Current indications for surgical treatment of pulmonary TB (WHO, 2014)

The role of surgery in the treatment of pulmonary TB

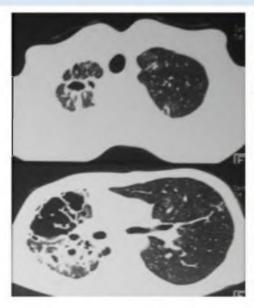
and multidrug- and

extensively drug-resistant TB

· Emergency indications

- · profuse lung haemorrhage
- · tension spontaneous pneumothorax

· Urgent indications

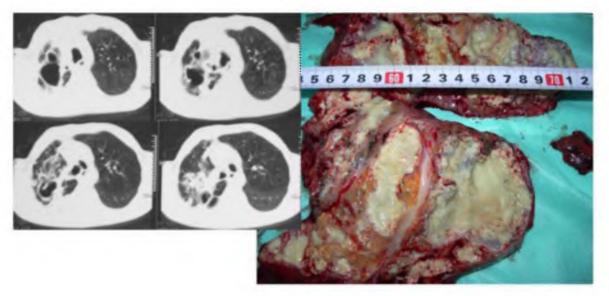

- · irreversible TB progression, despite adequate anti-TB chemotherapy
- recurrent haemoptysis that cannot be stopped by other treatment methods

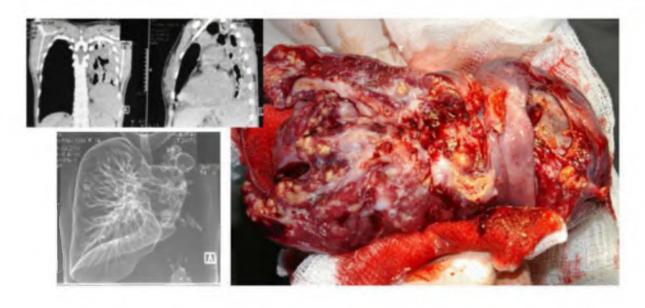
· Elective indications

- cavitary TB with continuous M. tuberculosis excretion confirmed by bacteriological examination and DST after four to six months of supervised antiTB chemotherapy
- · MDR / XDR-TB characterized by failure of anti-TB chemotherapy
- complications and sequelae of the TB process (including M/XDR-TB), including: spontaneous
 pneumothorax and pyopneumothorax, pleural empyema with or without bronchopleural fistula,
 aspergilloma, nodular-bronchial fistula, broncholith, pachypleuritis or pericarditis with respiratory and
 blood circulation insufficiency, post-TB stenosis of trachea and large bronchi, symptomatic and
 chronic post-TB bronchiectasis
- · other indications such as the elimination of complications of previous surgery

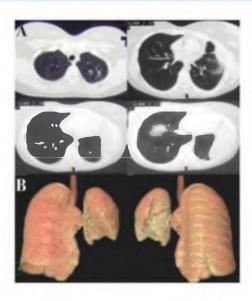
Fibro-cavitary TB 500 patients (67.4%) [XDR 83.3%, MDR 58.3%]

<u>Tuberculoma 146 patients (19.7%)</u> [XDR 8.8%, MDR 26.0%]



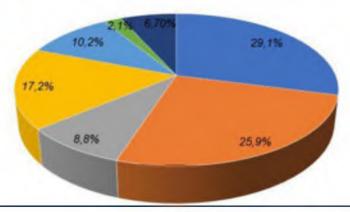

Caseous pneumonia 19 patients (2.6%) [XDR 1.8%, MDR 3.1%]

Tuberculous cirrhosis 5 patients (0.7%) [XDR 0%, MDR 1.0%]



Tuberculous empyema

as an isolated clinical form of TB - 12 (1.6%) [XDR 0%, MDR 1.0%]; as a complication - 131 (17.7%) patients [XDR 22%, MDR 15.1%]



Surgery Volume

Thoracoplasty

Combined polysegmental resections

Segmentectomy

- Lobe-, bilobe-, lobe+segmentectomy
- Pneumonectomy, pleuropneumonectomy Transsternal main bronchus occlusion

Other

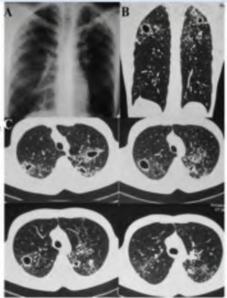
Some technical features of operations performed

- Video assisted miniinvasive access (VATS pneumonectomy rate was 47% of all pneumon- and pleuropneumonectomy; VATS resections rate was 56,6% of all resections; over 90% of thoracoplasty were video assisted)
- Extensive resections were combined with collapse surgery techniques as thoracoplasty, extrapleural pneumolysis with extrapleural cavity sealing
- · Separate root element processing was performed in all pneumon-, lobe, bilobectomy, polysegmental and combined resections.
- In pneumonectomy main bronchus was manually sutured with D.B. Giller technique
- In case of macroscopic mediastinal lymph nodes alteration selective mediastinal lymphadenectomy was performed

Video assisted miniinvasive access

Extensive resection combined with collapse surgery techniques as VATS thoracoplasty

Bilateral extensive pulmonary resections combined with collapse surgery techniques (bilateral VATS thoracoplasty)



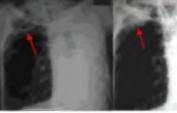
THE ANNALS OF THORACIC SURGERY

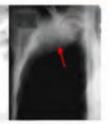
to do to

Case of Video-Assisted Thoracoplasty Application in Pulmonary Tuberculosis Treatment

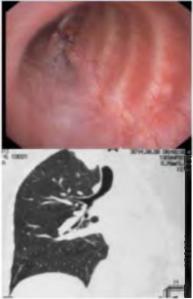
Charles Care and care (\$1 and care of care at \$10 and \$2 and \$2

VATS extrapleural pneumolysis with extrapleural cavity sealing

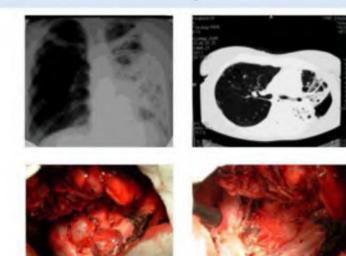




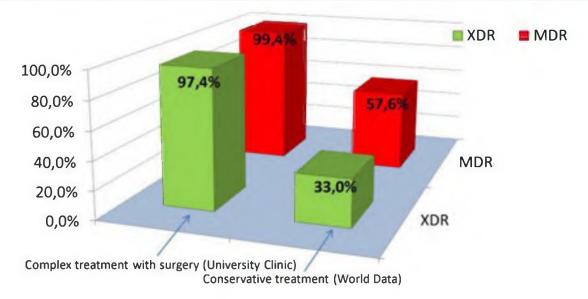
Separate Lung Vessels Ligation during VATS Pneumonectomy / VATS Resection

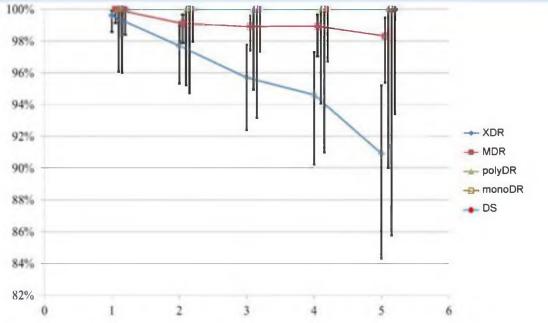


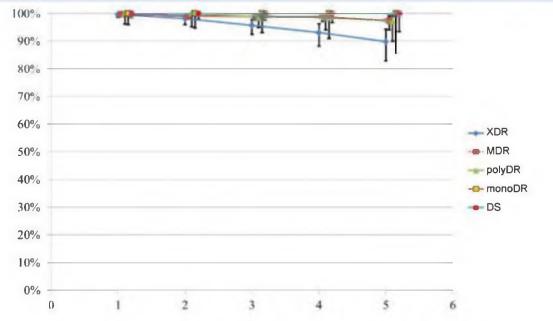
Main bronchus manual suturing (pneumonectomy)



Mediastinal lymphadenectomy during pneumonectomy in caseous pneumonia

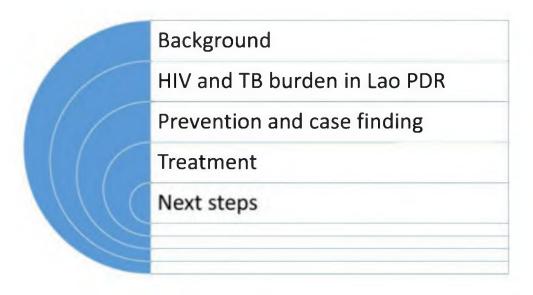



Direct Efficacy of MDR/XDR TB Treatment


Efficacy Dynamics after Surgeries Depending on MBT Resistance (long – term 5 years results)

Survival Rate after Surgeries Depending on MBT Drug Resistance

Thus, radical surgery inclusion in complex drug-resistant TB treatment makes it possible to increase MDR TB treatment efficacy at least twice, and XDR three times from the level of modern treatment efficacy in the world.

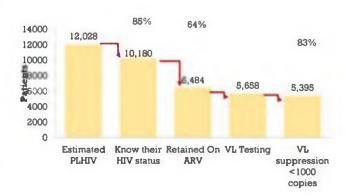

TB/HIV collaborative activities in LAO PDR

ASEAN VIDEO CONFERENCE 16 November 2020

Dr Sakhone SUTHEPMANY, Deputy Director of NTC

By: NTP Lao

Content


Background

- Lao PDR has Communicable disease law (DCDC) HIV/AIDS law No TB-HIV co-infection law
- TB/HIV technical working group (TWG) includes MoH DCDC, National AIDS programme (Centre for HIV AIDS and STIs (CHAS)), NTP (National TB center (NTC)), CBOs, UNAIDS, WHO
- TB/HIV collaborative activities are included in both TB and HIV National plans and guidelines
- TB and HIV first joint GF grant (\$15.5M) is approved for 2021-2023
- HIV and TB programs use same M&E platform (MoH HMIS DHIS2) for case based monitoring and reporting

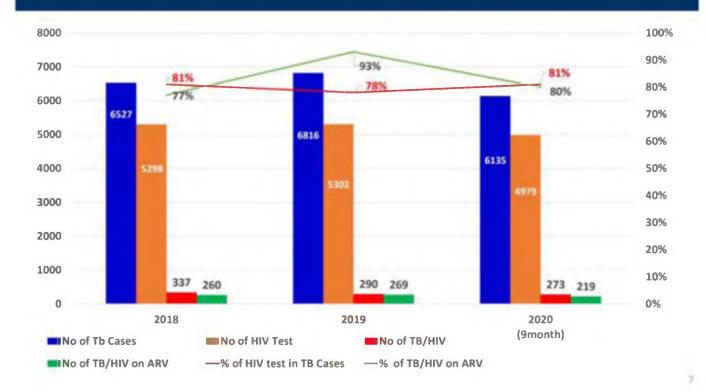
HIV and TB burden in Lao PDR (1)

- National HIV prevalence was estimated at 0.3% of the adult population in 2019
- HIV is concentrated epidemic among KPs.
 Prevalence among MSM increased from 1.7% to 2.8% from 2014 to 2017 https://aidsinfo.unaids.org
- AEM-Spectrum modelling (UNAIDS): PLHIV increase to 14,570 by 2030 with 500-600 new infections and 200-300 deaths each year
- 11,000 FSW and 1,800 MSM were tested for HIV during the 4 last quarters (April 2019-March 2020)

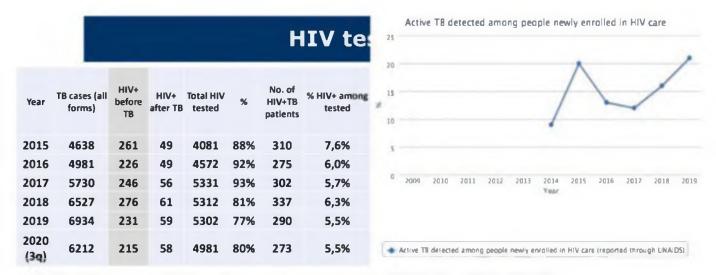

HIV Patient Cascade in Lao PDR as of end of 2018

Indicators TB/HIV

Indicators	2018		2019		2020	
	Target	Done	Target	Done	Target	Done (9month)
6. Percentage of notified cases of all forms of TB-(i.e. bacteriologically confirmed + clinically diagnosed), includes new and relapse cases Tested for HIV	100%	81%	100%	78%	100%	81%
7. Percentage of notified cases of all forms of TB-(i.e. bacteriologically confirmed + clinically diagnosed), includes new and relapse cases and HIV+	-	6,36%	-	5,46%	-	5,48%
8. Percentage of HIV-positive new and relapse TB patients on ART during TB treatment	90%	77%	90%	93%	90%	80%
9. Percentage of HIV-positive new and relapse TB patients on CPT (Cotrimoxazole) during TB treatment Cotrimoxazole	80%	67,6%	85%	80%	90%	84%

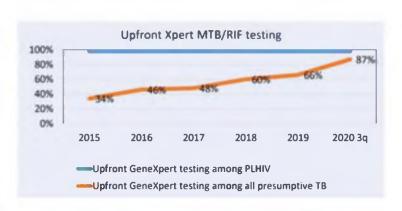

HIV and TB burden in LAO PDR (2)

- In 2019, estimated 155 (100-222)/100k TB incidence (11,000 cases) and treatment coverage 61%
- HIV positive TB incidence 8.5 (5.4-12)/100 (610 cases) and treatment coverage 48% (290)
- HIV neg. TB mortality 27 (16-41)/100k (1900 deaths) CFR 17%
- HIV+ TB mortality 2.9 (1.9-4.2)/100k (210 deaths) CFR 34%



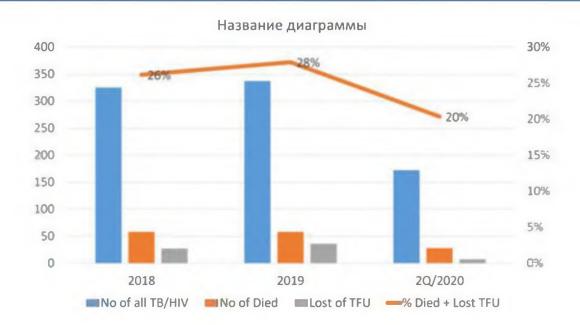
Number of co-infection TB/HIV

HIV/TB Prevention and case finding


- HIV and TB program implement HIV/TB collaborative activities for prevention and care of TB/HIV co-infection in country and cross border (training, joint supervision)
- Lao Thai cross border collaboration for HIV and TB and Lao and Yunnan province for HIV (commodities, laboratory and treatment)
- 11 ART centres and 5 POC implement Intensified TB screening, Infection control (administrative, environmental and and PPE) and TPT to treat latent TB infection (LTBI)
- New PLHIV who do not have active TB disease at TB screening receive TPT (6 month Isoniazid)
- 80% among TB patients have and HIV test result available; HIV test 1 and 2 available for all TB patients at district level, third confirmatory test at provincial level/ART site

- HIV+ TB are mostly found among pre-existing PLHIV (by NAP, CHAS)
- HIV testing among all TB patients is ≈80% due to limited access to HIV test for TB patients in some districts

Diagnosis of TB among PLHIV


- TB incidence among PLHIV is high 15-20%
- Upfront Xpert testing among all PLHIV since 2015 and among all presumptive TB increasing rapidly (target 90% in 2020)
- Digital CXR can help for diagnosis of TB and other OI (e.g.: PCP, mediastinal adenopathy)

10

HIV+ TB Treatment outcome

11

ART TREATMENT

National policy is to provide ART to all PLHIV regardless of CD count after HIV diagnosis

11 ART sites (Central Provincial Hospitals) and 5 Point Of Care have the capacity for clinical management of TB and HIV cases

80% HIV+ TB patients receive ART mostly among pre-existing PLHIV (HIV+ before TB diagnosis); (80% 2017, 77% 2018, 83% 2019, 80% 2020 3q)

HIV+ TB patients tested HIV+ after TB diagnosis can have delayed access to testing and ART if they live in remote districts

Challenges

- 1. TB/HIV indicators not yet reach the targets:
 - All forms of TB screened for HIV
 - HIV-positive new and relapse TB patients on ART during TB treatment
 - HIV-positive new and relapse TB patients on CPT during TB treatment
- 2. High death rate and lost of treatment follow-up
- 3. Delay of quarterly report and inconsistencies

13

Steps forward for TB/HIV 2021-2025

- Increased involvement of all healthcare providers, PCCA/DCCA, PLHIV networks and CBOs in the follow-up of patients
- Expand access to VCT unit in all districts
- Address high morbidity/mortality among HIV+ TB patients
- Capacity building for health staff at provincial, district and health centre levels to improve diagnosis of active TB and LTBI among PLHIV
- Utilization of GeneXpert for viral load (VL) in ARV sites.
- Decentralize access ART for all HIV+TB patients
- 100% patient monitoring and reporting with DHIS2 (HIV and TB tracker)

Kob jai

1.5

Russia: M.D, PhD, Nadezhda Klevno "Tuberculosis and HIV infection in children: features of diagnosis, treatment, prevention"

Federal State Budgetary Institution
'National Medical Research Center of Phthisiopulmonology and Infectious Diseases'
Ministry of Health of the Russian Federation

Tuberculosis and HIV-infection in children: diagnosis, treatment, prevention characteristics

M.D, Nadezhda Klevno, Leading researcher

Russian Federation

HIV-infected women and maternity in RF

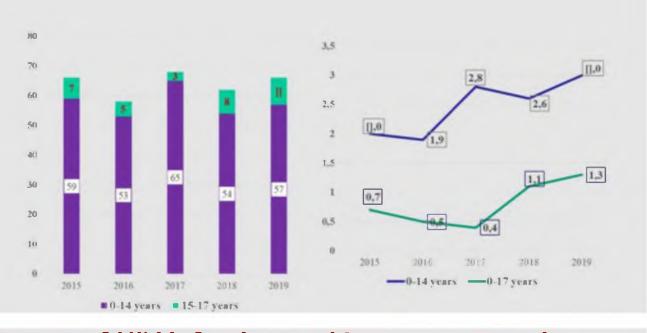
Pregnancy has occurred

in every 15th HIV (+) woman

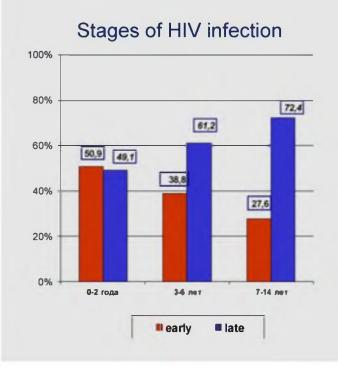
children were born alive (2019, f. No.32)

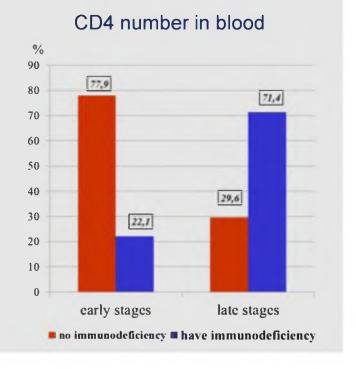
1.450.487 13.675 from HIV mother- 0,9%

Gave birth to a child


every 20th HIV(+) woman

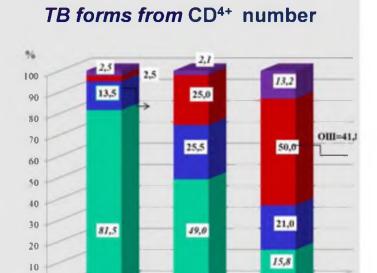
By the beginning of 2019 more than 10 000 HIV-infected children were registered


HIV+TB co-infection among newly diagnosed TB patients 0-17 years old


HIV infected (abs)

HIV infected (%)

Stages of HIV infection and immune status in children with newly diagnosed TB (author's research n = 166)



The structure of clinical forms of TB depending on the immune status (n =166)

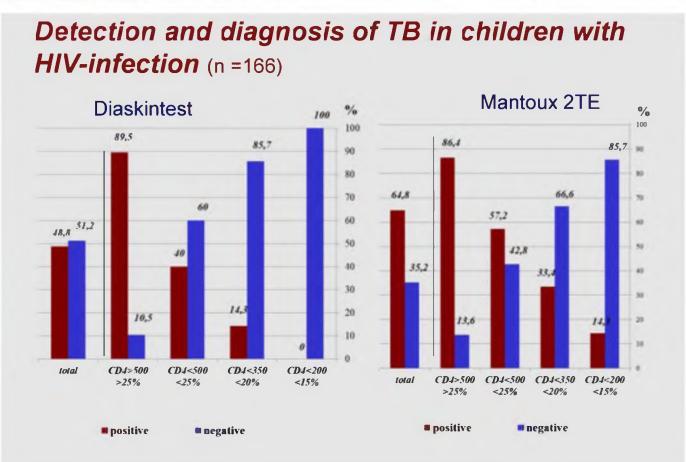
Generalized TB in a 12-year-old child (CD4 – 20 cells / μl)

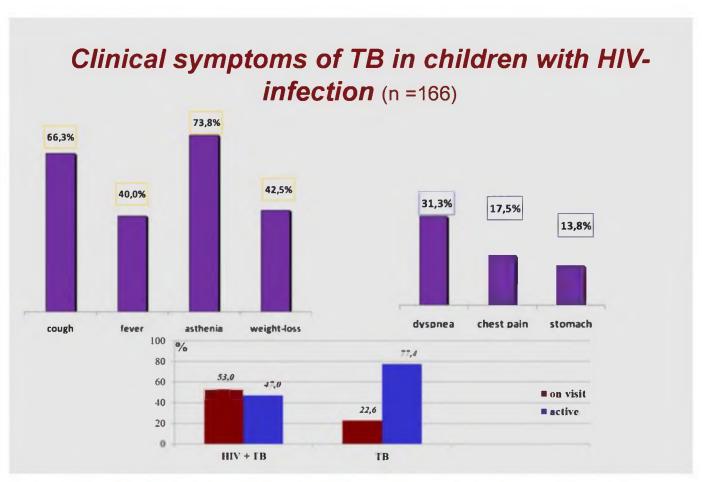
CD<500 cells /

µ1<25%

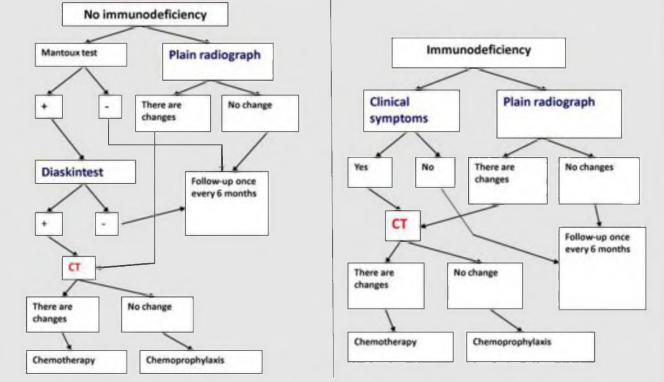
CD<200 cells / µl

<15%


primary TB complex


CD>500 cells / µl

>25%


disseminated

intrathoracic lymph node

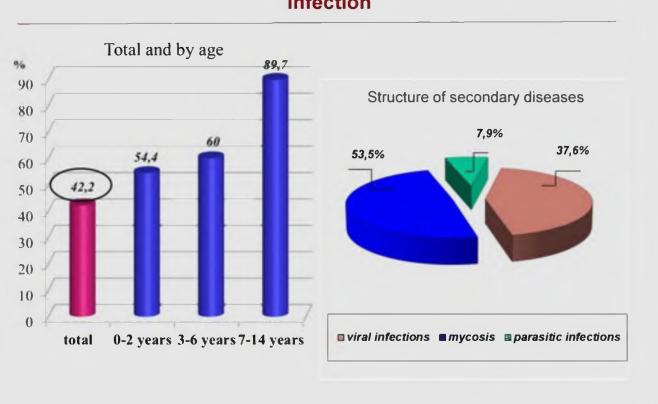
Tactics for TB diagnosing in the absence and presence of immunodeficiency No immunodeficiency Mantoux test Plain radiograph Immunodeficiency

Treatment

Criteria for choosing anti-TB drugs:

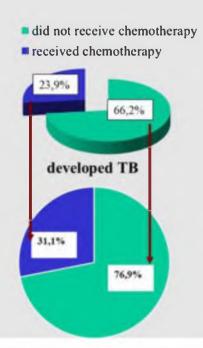
- high efficiency;
- · safety;
- drug tolerance;
- ART compatibility
- presence of concomitant diseases

Chemotherapy regimens


Chemotherapy regimens are individual among the third of patients:

✓- more than 60% of children received ART before chemotherapy, the regimen was not changed, R was excluded; ✓R excluded - reserve anti-TB drugs (fluoroquinolones) were prescribed;

✓ the presence of concomitant conditions and diseases;


Relapses were noted in 7% of children after de-registration, treatment excluding R and only with anti-TB drugs

Secondary diseases in patients with TB combined with HIV infection

Prevention of TB in children with HIV infection

Specific: prophylactic anti-tuberculosis treatment (n = 166)

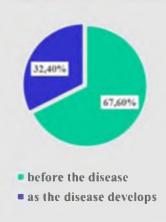
Criteria for drug prescription:

- √ First positive Mantoux test
- ✓ Positive and doubtful Diaskintest (IGRA tests)
- ✓ Contact with a TB patient
- √The presence of immunodeficiency (CD4 <350 cells) and secondary diseases, regardless of the test results

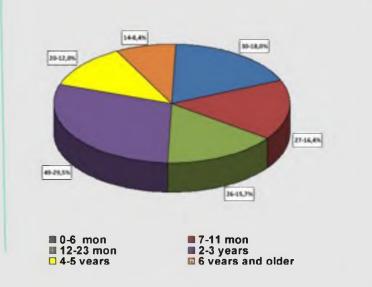
Management of patients with latent tuberculosis infection (LTBI)

6.1. HIV-infection.

- √ Isoniazid (H) for 6 months,
- √ rifampicin(R) for 4 months,
- ✓ isoniazid and pyrazinamide/ ethambutol (HZ/E) for 3-6 months,
- ✓ Isoniazid in combination with rifapentine (HP) for 3 months, taking medications once a week.
- ✓ Prescribing R, HP taking into account ART



Prevention of TB in children with HIV infection


Non-specific: early detection of HIV infection

In one third of children (32,4%) with TB, HIV infection was detected simultaneously with tuberculosis

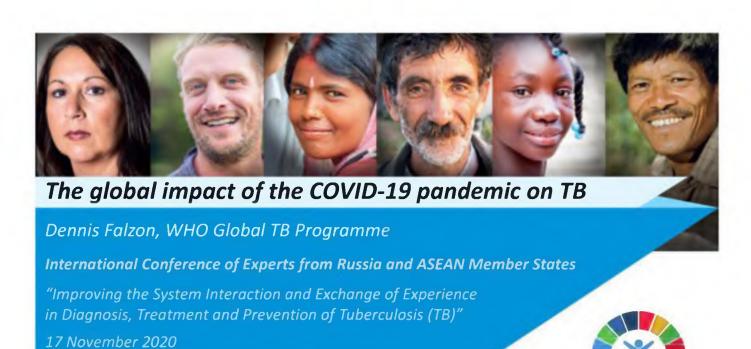
in 30% of children HIV infection was diagnosed after 2 years old

Conclusion

To prevent TB development:

- √ Timely diagnosis and monitoring of latent tuberculosis infection;
- √ 100% coverage of HIV infected children with preventive antituberculosis treatment in indicated cases;
- ✓ Early diagnosis of tuberculosis (by all methods and taking into account the immune status);
- ✓ If respiratory tuberculosis is suspected CT of the lungs;
- ✓ Dispensary observation of children who have undergone tuberculosis under 18;

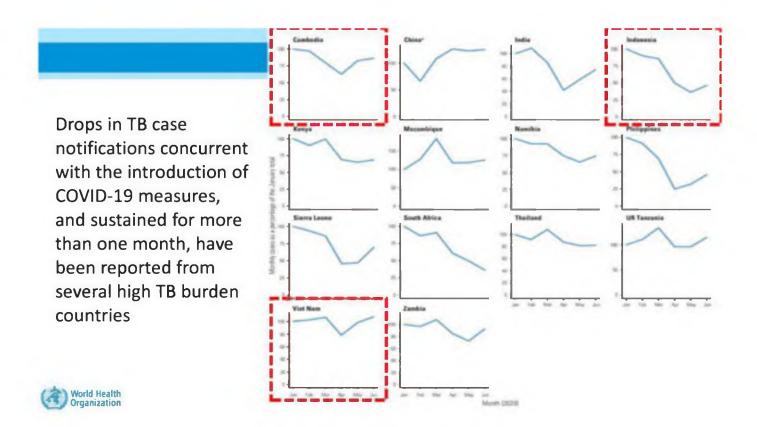
Conclusion


To prevent TB development:

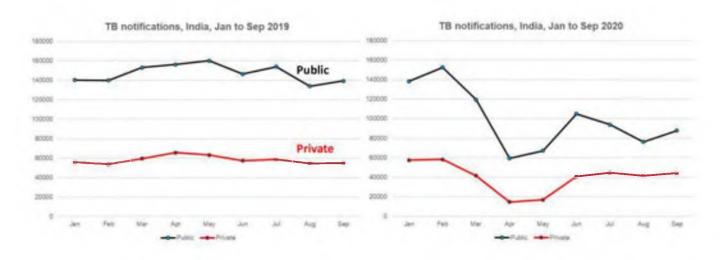
For HIV infection

✓ Early treatment – HAART can be a method of preventing common forms of tuberculosis. According to our data, against the background of 'planned' ART, the tuberculous process was more limited than in children who did not receive ART (OR=3,85; 95% CI 2,4-7,3), disseminated (generalized) processes were diagnosed only in children, who did not receive ART before the disease was diagnosed;

Thank you for attention!



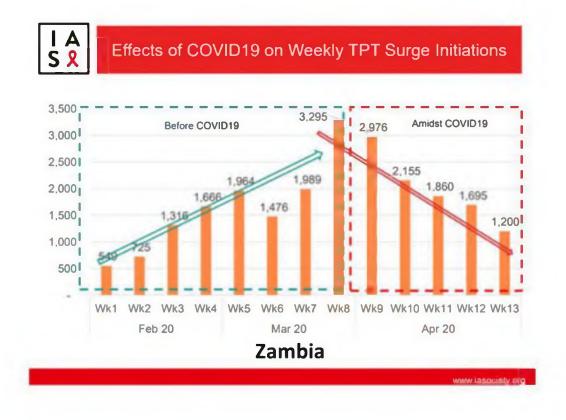
Impact



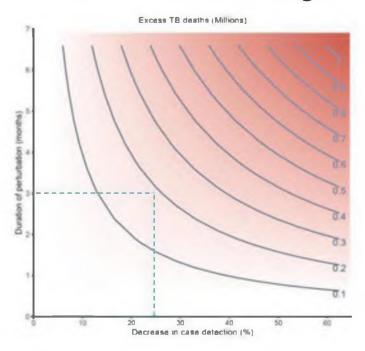
Globally, as of 10:21am CET, 16 November 2020, there have been 54,075,995 confirmed cases of COVID-19, including 1,313,919 deaths, reported to WHO.

https://covid19.who.int/

India: TB notifications in public and private sectors, 2020 vs 2019



Source: Nikshay, India (as on 4 November 2020) https://reports.nikshay.in/


China: TB notifications, 2017-2020

Source: H Fei, China (as on 9 May 2020)

Predicted excess in global TB deaths in 2020

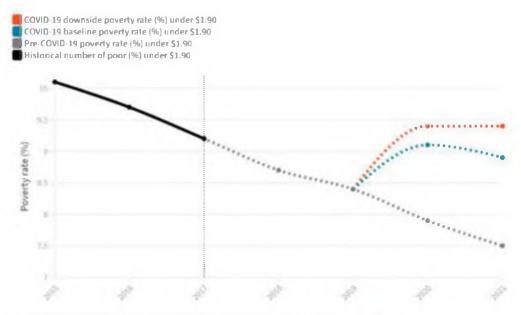
If 25% drop in global case detection over 3 months

→ 190,000 additional TB deaths

(on top of 1.4m TB deaths predicted for 2020)

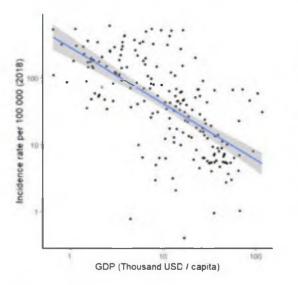
COVID-19 related impact on key drivers of TB

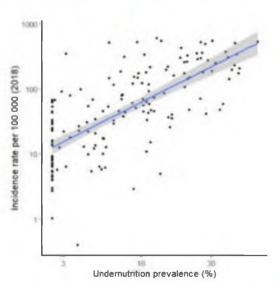
The cost of inaction: COVID-19-related service disruptions could cause hundreds of thousands of extra deaths from HIV



-5.2% global contraction in GDP in 2020

	2019	2020
World	2.4	-5.2
Advanced economies	1.6	-7.0
Emerging market and developing economies	3.5	-2.5


World Bank. Global Economic Prospects, June 2020



Source: <u>Poverty and Shared Prosperity 2020</u>. <u>PovcalNet</u> • Note: Extreme poverty is measured as the number of people living on less than \$1.90 per day. 2017 is the last year with official global poverty estimates. Regional nowcasts can be found https://oublic.flourish.studio/visualisation/3704609/.

Tuberculosis, a disease of poverty

Response

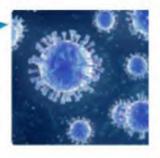
Key actions of TB programmes during COVID-19

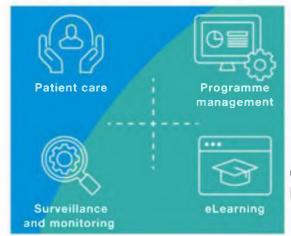
- leverage the expertise of TB programmes for the COVID-19 response
- maximize remote care for people with TB through digital technologies
- minimize the number of visits to health services that are required during treatment, including through use of WHO-recommended, all-oral TB treatment regimens and community-based care
- limit transmission of TB and COVID-19 in congregate settings and health care facilities by ensuring basic infection prevention and control for health staff and patients
- maintain and scale up TB preventive treatment, including via synergies with contact tracing efforts related to COVID-19
- provide simultaneous testing for TB and COVID-19 for individuals when indicated
- ensure proactive planning and budgeting for both conditions

Impacts on TB services and mitigation strategies reported by 184 NTPs to WHO in April-May 2020

INCLUSION OF MICHOLOGICATION	NUMBER OF COUNTRIES THAT REPORTED THE IMPACT OR MITIGATION STRATEGY	
IMPACT OR MITIGATION STRATEGY	ALL COUNTRIES (N=184)	30 HIGH TB BURDEN COUNTRIES
Impacts on health service availability		
Fewer health facilities providing outpatient care for people with drug-susceptible TB	32	7
Fewer health facilities providing outpatient care for people with multidrug- or rifampicin-resistant (MDR/RR) TB	21	4
Fewer hospitals providing inpatient care for people with drug-susceptible TB	35	9
Fewer hospitals providing inpatient care for people with MDR/RR-TB	33	9
Reduced number of outpatient visits for people with TB	127	28
People with TB asked to self-isolate at home	93	14
Reallocation of TB resources to the COVID-19 response		
Reallocation of NTP staff at national or subnational level	85	20
Reallocation of funding	52	14
Reallocation of GeneXpert machines	43	13
Mitigation strategies to facilitate continued access to treatment		
Providing TB patients with at least a 1-month supply of anti-TB drugs	100	25
Home delivery of anti-TB drugs	77	14
Enabling TB patients to nominate a household member to collect their drugs	96	20
Expanded remote advice and support using digital technologies	108	21

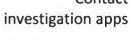
Actions taken by the WHO Global TB Programme in the context of the COVID-19 pandemic since January 2020 January 2020 Ongoing WHO Global TB Programme actions to address TB and COVID-19 with partners and civil society January onwards Joint monitoring with WHO regional and country offices and provision of technical support to ensure continuity of TB services during the COVID-19 pandemic March April May-June June-November Interim guidance • Callection and . TB content for WHO Modelling study of the TB and COVID-19 impact of the COVID-19 on community based health care, analysis of data from operetional guidance all Mambar States published gandamic on plobal on maintaining TB deaths in 2020 including autreach . World TE Cay online pub shad and campaions in COVID-19 pandemic on services in the contest talk show and joint of the COVID-19 victual too nhall on TB Scientific breif about and COVID-19, hested COVID-19 pandemic pandomic developed BCG vaccination and published and published by WHO with the Step COVID-18 published TB Partnership Updated information • Compondum of TB/ COVID-19 (esearch COVID-18 (saued producad


> Collaboration with key partners including the Global Fund, the Stop TB Partnership, USAID and the WHO Civil Society Task Force on TB to support countries



"Retooling" for current challenges

Examples of products used for TB programmes now being roped into the COVID-19 response



Digital adherence technologies

Connected diagnostics

Contact investigation apps

Online training in laboratory biosafety

Operational planning during COVID pandemic

Maintaining TB care as an essential health service

Programme activities	Modifications for safe delivery of services	Transition towards restoration of activities	
Prevention	Contact investigation Drug stocks for TPT	Monitor contact investigations and recruitment on TPT	
Diagnosis	Molecular diagnostic services Transporting biological specimens Biosafety during diagnostic testing	Monitor test requests or diagnosed TB Restart specimen collection at facilities Maintain universal biosafety precautions	
Treatment & care	Drug stocks for TB treatment Communication technologies for treatment support and reduce visits	Monitor TB treatment recruitment Document uptake of digital adherence technologies	

TB/COVID-19 research

Compendium of ongoing TB/COVID-19 research projects

The compendium of ongoing TB/COVID-19 research projects, provides a listing of ongoing research activities at different countries. It maps Digital library of TB/COVID-19 publications and COVID-19, with a view and civil society. The To keep current on the theoretical and scientific knowledge related to the impact of the COVID-19 pandemic on the development and transmission of tuberculosis disease, we have created a digital library of publications. The int topics such as prevention, screening, clinical observation, treatment, kly find and access the latest information. It was constructed by or reviewed publications on TB and COVID-19, the methodology used e library Call for case studies focusing on niond TB/COVID-19 publications programmatic innovations in TB prevention and care, in the context of the COVID-19 pandemic

World Health Organization

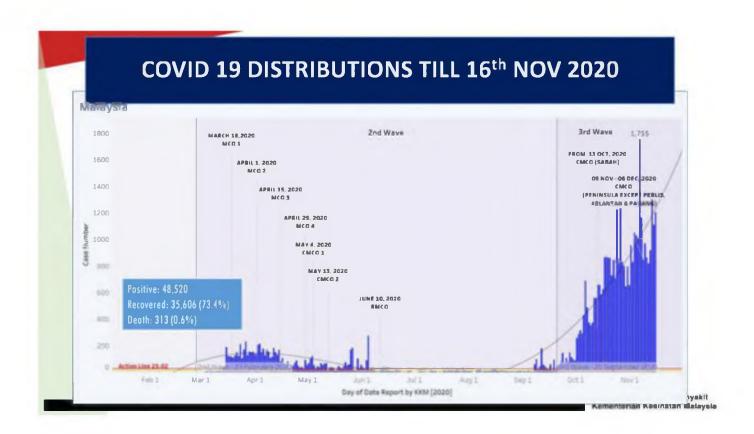
https://www.who.int/teams/global-tuberculosis-programme/covid-19/compendium

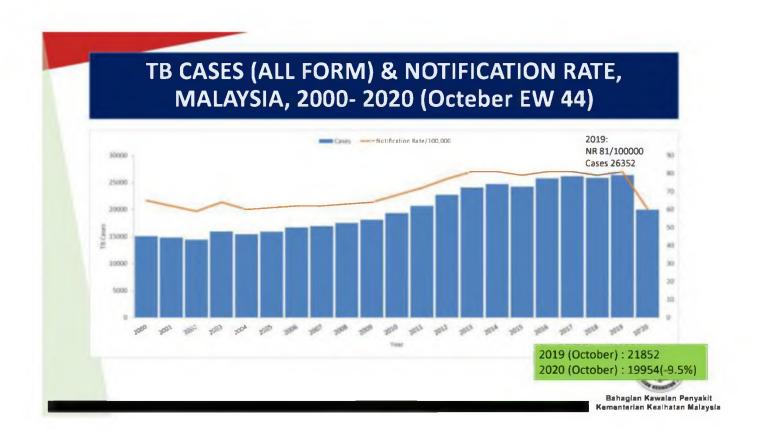
Conclusions

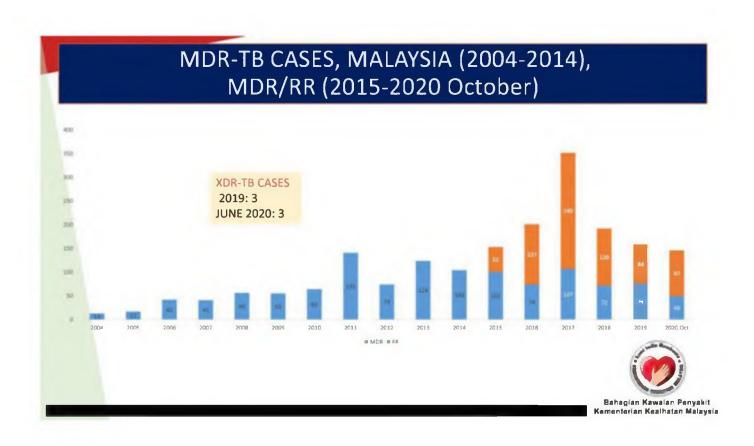
- The COVID-19 pandemic is likely to have a lasting impact on TB burden and transmission
- Addressing COVID-19 adequately will challenge competing needs to maintain and continue to develop essential services like TB
- Recovery post-pandemic will be influenced by the global socio-economic downturn forecasted in the coming months, with a risk for further marginalization of vulnerable populations
- WHO Global TB Programme, WHO regional and country colleagues and partners continue to monitor the situation and supporting countries in the response

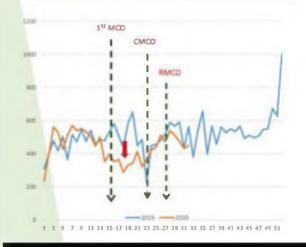
Acknowledgements

- WHO Global TB Programme staff
- WHO Regional TB Advisers
- WHO Country Staff
- Other WHO/HQ departments (e.g. emergencies, infection control)
- National TB Programmes & other MoH staff
- Technical and funding partners
- Affected people and communities






Impact of Tuberculosis Control Program during Pandemic Covid-19 in Malaysia



Challenges for TB Program during COVID-19 Pandemic

CDR, ACD, Contact (2019 vs 2020)

COVID-19 with Hx PTB -PTB + ve = 20

-PTB -ve = 8-Extra PTB = 7

Best Practices

Early adaptation of new norms in National TB Control Program:

- Community/Modified DOT- virtual
- Practicing new norm activities on ACD, investigations, Diagnosis, Treatment, Health promotion and Training

Strengthening of TB activities in Institutions:

- Guideline on TB Management in Drug Rehabilitation Centre
- Guideline on Management of TB in Immigration Detention Centre

Expansion of screening for Latent TB and Management:

- All contacts of smear positive TB cases
- Contacts among TB cluster/outbreak
- Healthcare workers

Kementerian Kesihalan Malaysia

Challenges faced in MALAYSIA in managing TB/DRTB

- Further away from hitting the goal of the END TB strategy due to:
 - ✓ Not/late seeking treatment by patient- lead to increase in mortality
 - ✓ Missing of TB cases the symptoms of TB and COVID-19 can be similar
 - ✓ Low treatment adherence lead to high loss to follow up cases.
 - ✓ Non adherence to contact screening and follow up as required by SOP
- Monitoring of progression from latent tuberculosis infection to active disease since COVID-19 could accelerate activation of dormant tuberculosis.

THANK YOU

Myanmar: Aye Nyein Phyu "The Best Practices in TB control in Myanmar as a base for further Collaboration for End TB)"

The Best Practices in TB Control in Myanmar as a base for further collaboration for End TB

Dr. Aye Nyein Phyu Medical Officer National Tuberculosis Programme(Central- Mandalay)

17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

1/30

Presentation Outlines

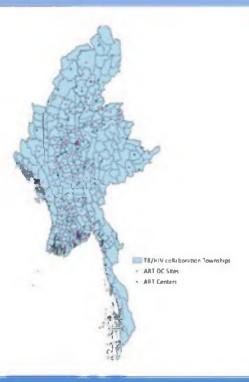
- Best practices in TB/HIV services
- · Accelerated case findings activities
- PPM(public private mix/public public mix) activities
- Community based MDR-TB care
- TB Preventive Therapy
- Challenges
- Future plan

(2)

17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

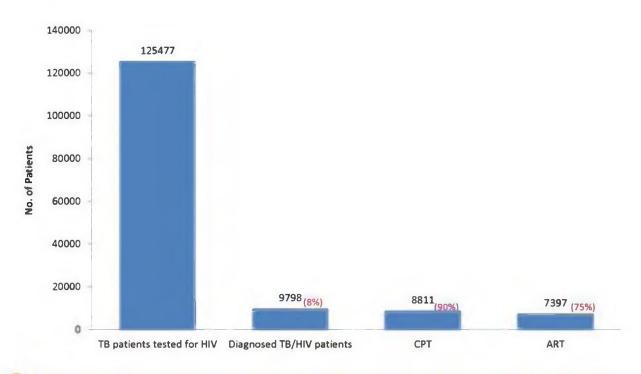
TB/HIV services in Myanmar


17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

3/30

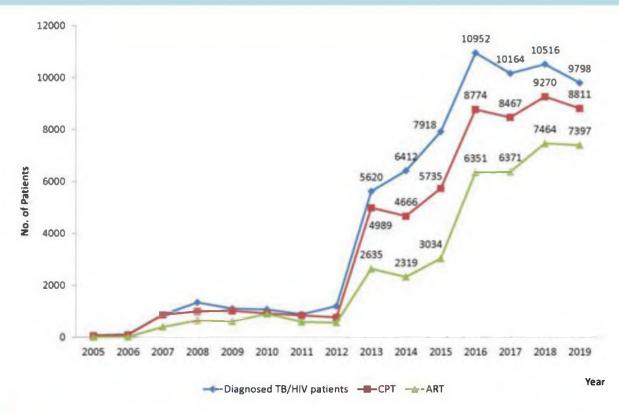
TB/HIV collaborative townships and ART centers/DC sites


- Initiated in 7 townships since 2005
- Gradually expanded to 28 townships by 2013
- Scaled up to 108 townships in 2014; covering a total of 136 townships in 2014
- Scaled up to 100 townships in 2015; covering a total of <u>236 townships</u>
- Scaled up to 94 townships in 2016; covering all 330 townships in 2016.

17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

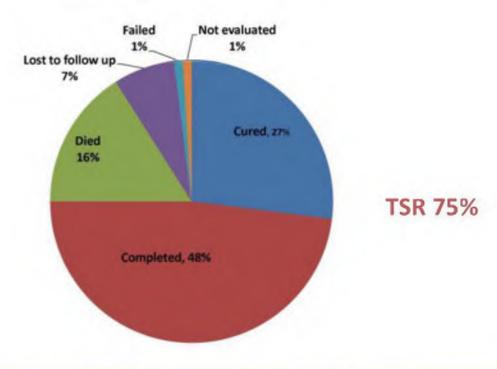
TB/HIV Collaborative Activities (2019)



17th November , 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

5/30


Trend of TB/HIV Collaborative Activities

17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

Treatment Success Rate (TSR) of TB/HIV cases, 2018 cohort

00 17th November , 2020

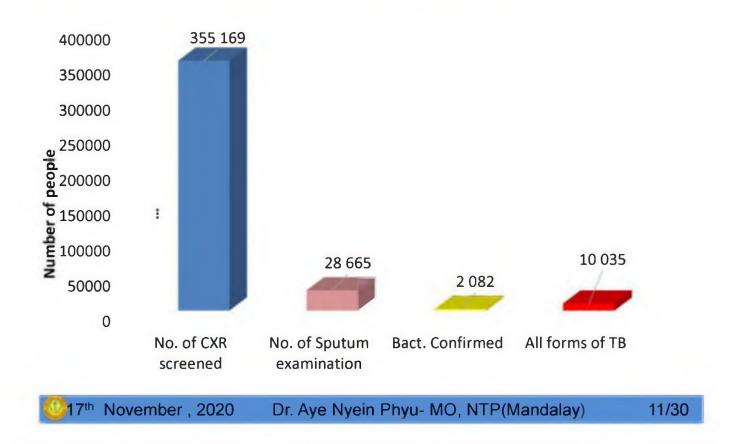
Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

7/30

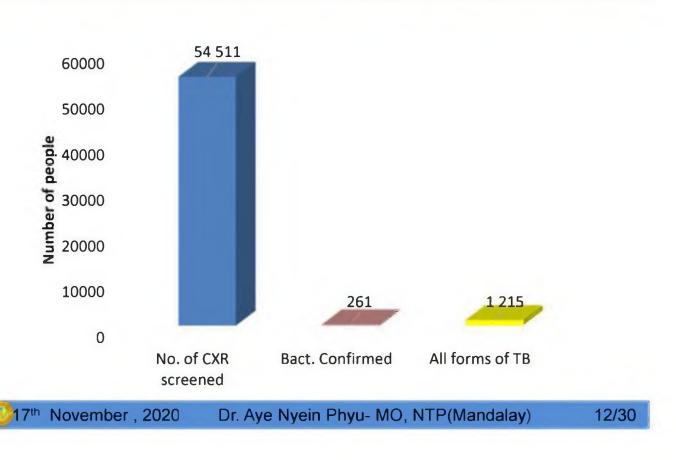
Accelerated Case Findings Activities 2019

Achievement of ACF and contribution (2019)

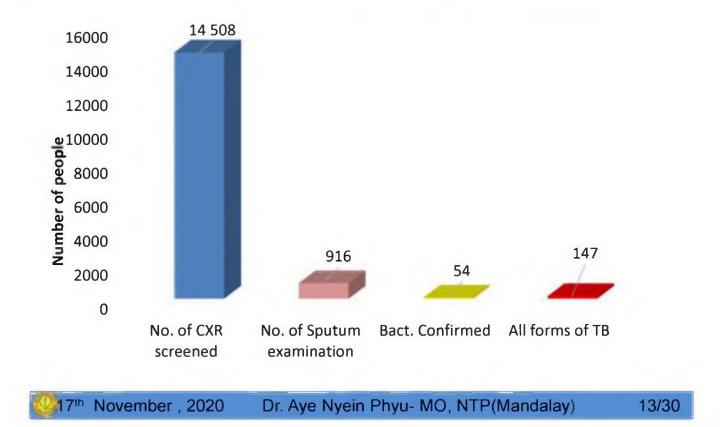
ACF Activities	Presumptive TB referral	TB Case Notified	TB Case finiting among referral (%)	Contribution to national TB nutification
Community-based TB Care	131,826	17,246	13%	12.9%
Mobile Team	355,169	10,035	3%	7.5%
TB Screening among under 5	9,634	1,928	23%	1.4%
Initial Home Visit and Contact Tracing of BHS	18,984	1,034	10%	0.8%
TB Screening at OPD and DM Clinics	1,226	419	27%	0.3%
Sputum Collection Center	10,510	163	2%	0.2%
TB screening at AN & PN care	2,758	50	2%	0.04%
TOTAL	530,107	30 ,875	5.8%	23%


NGOs, INGOs & EHOs (2019)

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

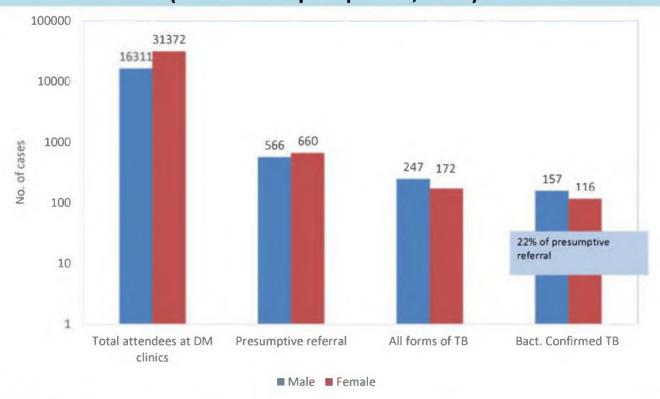

Local NGOs(11)	International NGOs(22)
Myanmar Women's Affairs Federation	Asia Harm Reduction Network
Myanmar Maternal & Child Welfare Association	International Organization for Migration
Myanmar Medical Association	International Union Against Tuberculosis and Lung Disease
Myanmar Health Assistants Association	Malteser International
Myanmar Red Cross Society	Medical Action Myanmar
Pyi Gyi Khin	Population Services International
Ethnic Health Organizations (EHOs)	World Vision International
Karen Department of Health and Welfare	Health Poverty Action
EHO – Special Region 2	RIT/ JATA (Japan Anti-Tuberculosis Ass.)
EHO – Special Region 4	Community Partners International
Myanmar Anti-TB Association(MATA), SARA	MDM, MSF-H, MSF-CH, SMRU,STC, CHAI,FHI360,Alliance, RI, ARC, MANA, IRC

17th November, 2020


Mobile Team Achievement, 2019

Mobile Team visits to prisons and worksites, 2019

Pre-entry Screening Achievement, 2019

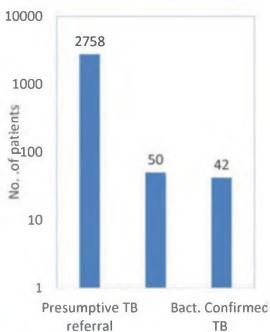

Initial Home Visit and Contact Tracing Activities of BHS (2019)

Index Patients receiving CI	Contacts identified	Contacts investigated for TB symptoms	Contacts referred for evaluation	Contacts diagnosed as DS-TB	Contacts diagnosed as DR-TB
51,849	211,867	121,595	18,984	1,019	15
		57% of contacts	16% of contacts	5% among referral	0.1% among referral
				,	

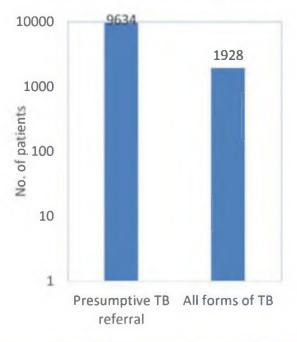
17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

TB screening in OPD & DM clinics (107 Townships reported, 2019)


17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)


15/30

ACF in MNCH services, 2019

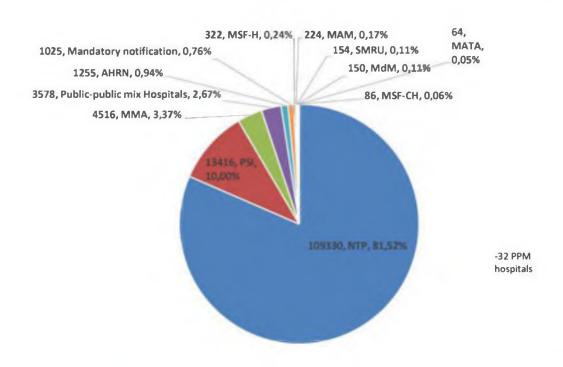
AN & PN Care (Total attendance - 1,654,656)

Under 5 Clinics (Total attendance - 1,399,311)

17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

PPM Activities


0

17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

17/30

Proportion of Total TB cases contributed by NTP & Other Partner units in 2019 (n=134120)

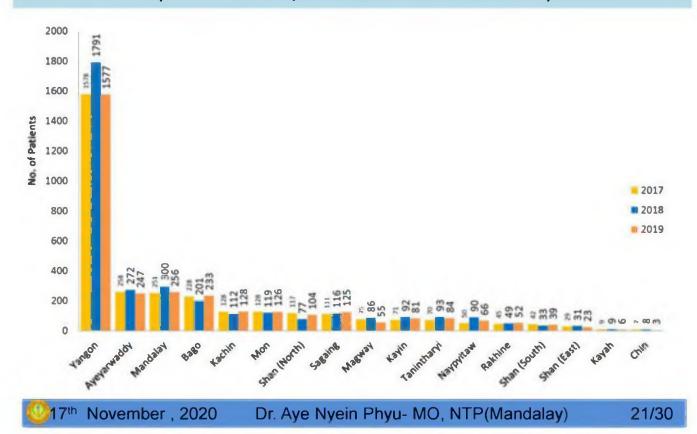
Community based MDR-TB care

17th November , 2020

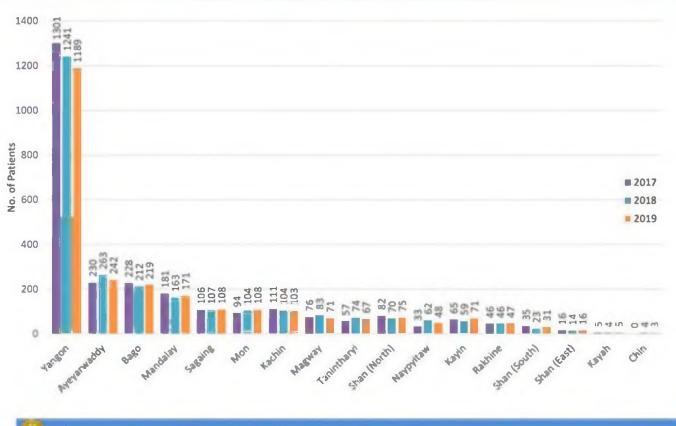
Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

Laboratory Service Expansion from Smear to Molecular Technologies

- Microscopy and X-ray: all townships & some stations levels
- Microscopy, X-ray & GeneXpert: all States/Regions, District levels and some high burden townships
- 540 sputum smear microscopy centers under EQA system
- 114 machines with GeneXpert MTB/RIF upto now (including 10 machines by partners)
- 4 Biosafety Level-3 Laboratories (Yangon, Mandalay, Taunggyi and Mawlamyaing)

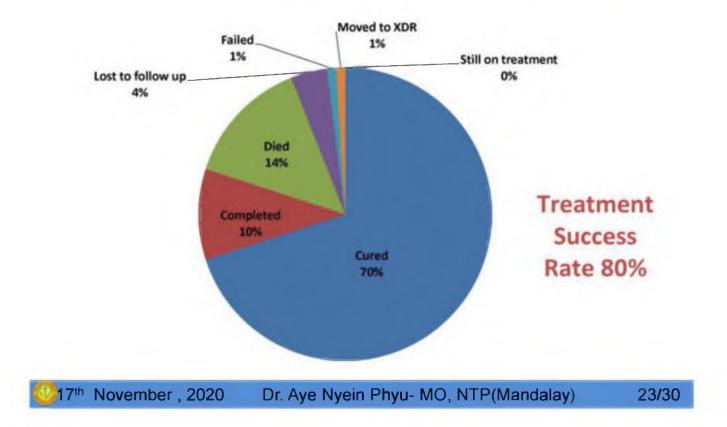


17th November, 2020


Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

20/30

Number of MDR/RR-TB patients notified by Region and State (2017= 3197 cases, 2018 = 3479 & 2019 = 3205 cases)


Number of MDR/RR-TB patients started treatment (LTR+STR) by Region and State (2017 = 2666, 2018 = 2,633 & 2019 = 2574)

17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

Treatment outcomes of 2017 PMDT cohort (n=2646)

TB Preventive Treatment

Under 5 TPT (2015-2019)

17th November , 2020 Dr. Aye Nyein Phyu- MO, NTP(Mandalay) 25/

Challenges faced in TB Control activities

- Limited Human Resource (Doctors, Lab Technicians, etc.)
- Lab Capacity & additional infrastructure/maintenance
- PPM network strengthening especially among private hospitals
- Inadequate sputum transportation from remote and hardto-reach area to GeneXpert sites & Culture facilities
- Transition from paper based to electronic R & R system
- Sustainable financing
- Universal Health Coverage

17th November , 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

Future Plan

- Expand TB diagnosis and treatment services at sub-township level based on the availability of the resources (e.g, HR, microscopy, CXR facilities)
- Enhance case detection and strengthen TB care and prevention by developing State/ Regional Specific Operational Plan
- Enforce MDRTB case notification by maximizing Gene Xpert testing to all eligible patients and reduce the gap between the notified and treated
- Expand PPM partnership especially in private hospitals
- Expand TB laboratory capacity & Infection control measures
- Scale up LTBI treatment in under 5 children
- Implementation researches on prioritized research areas

17th November , 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

27/30

Contact Person

- Dr. Aye Nyein Phyu
- M.B.,B.S(Mandalay)
- M.Med.Sc(Preventive and Tropical Medicine)
- Medical Officer
- National Tuberculosis Programme(Central-Mandalay),
 Department of Public Health, Ministry of Health and Sports, Republic of the Union of Myanmar

Phone No: +959 402575888

Email : <u>ayenyeinphyu1@mohs.gov.mm</u>

nyein.drsnow@gmail.com

References

- Overview of TB control in Myanmar(2020) by Dr. Si Thu Aung, Director(TB/Leprosy/ Trachoma), Department of Public Health, Ministry of Health and Sports, Republic of the Union of Myanmar
- NTP Overview (2020) by Dr. Cho Cho San, Deputy Director (TB), Department of Public Health, Ministry of Health and Sports, Republic of the Union of Myanmar

17th November, 2020

Dr. Aye Nyein Phyu- MO, NTP(Mandalay)

29/30

THANK YOU